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Revisit some common treatment effect analysis

Observation Assumption 1 (Unconfoundedness).
Confounder Y* (t) 1T | X fOI' all ¢ € T C R.

(Age)

T Treatment effect Identification
0.1} | ATEEY () - Y 0) | B[] B[22

@ I—— @ General ADRF: E[Y*(t)] E [%Y\T = t]

Treatment Observed Outcome
(Smoking) (Cancen) Nuisance parameter (Propensity Scores):
P(T = 1|X) or dFrx(T|X) (Generalised).
We want to infer Challenges:

Confounder

(Age) » Unstable ratio-type estimation: Sensitive

@ to small errors in estimating the
propensity scores;
\ \ > X € R?% d is usually large:
@ S m Parametric models — Model
Set Treatment Potential Outcome n]j'sspecj'fj'cati(:)nS
(Smoking) (Cancer)

m Nonparametric estimation — Bias
and/or curse of dimensionality



A unified framework

We consider a unified treatment model:

» L(y,z) : R xR — [0,00): a general (possibly non-smooth) loss
function; e.g., (¥ — 2)2/2;

» g(t;3): a user-specified parametric dose-response function
indexed by a p-dimensional parameter 8 = (Bo, f1,---,Bp-1)";

» For discrete T € T ={0,...,J}, 9(t; B) = Y7—o B51(t = 7);
m e.g., for binary T, g(¢;8) = fo - (1 —t) + f1 - L.

Then 8* = (85,61, - - - ,,6;,1)T is defined by:

3" := arg min / E [L(Y*(t), 9(t; B))] dFr ().
BERP T



A general causal framework

This framework covers a broad class of treatment effect models in
the literature.

L(y, 2) 9(t; 8%)
(y —2)*/2 E{Y*(¢)}
(y—2)-{T—1(y—2<0)}for7€(0,1) the 7-th quantile of Y*(¢)
—ylogz — (1 —y)log(l — 2) for y,z € {0,1} P{Y*(t) =1}




A general causal framework

This framework covers a broad class of treatment effect models in
the literature.

L(y, 2) 9(t; 8%)
(y —2)*/2 E{Y*(¢)}
(y—2)-{T—1(y—2<0)}for7€(0,1) the 7-th quantile of Y*(¢)
—ylogz — (1 —y)log(l — 2) for y,z € {0,1} P{Y*(t) =1}

» Binary case (9(¢;8) =Bo- (1 —t)+ B1-t): BT — B is
m row 1: Average Treatment Effect (ATE)
m row 2: Quantile Treatment Effect (QTE)



Identifying the general treatment effect parameter

» Y*(t) cannot be observed simultaneously for all .

» Use the stablised weight:

dFr(T)  dFp(T)dFx(X)
dFpx(T|1X) ~  dFrx(T, X)

mo(T, X) :=

» Identify: 8* = arg minE[mo(T, X )L(Y, g(T'; 3))], which can be

BeRP
estimated by
R N
B :=argminy _#(Ti, X;)L(Y;, 9(T3; B))
BER? 1=1

given an estimator 7.



Double/Debiased Machine Learning (Chernozhukov et
al. 2018, Kallus et al. 2024)

> BDML solves the efficient influence function (EIF) score:
SN 9{B; 7, i, T;, Y:, X} = 0, where 1 estimates the EIF

’l/)(yr: T)X;IB*)WU:#O) = WU(T)X)h(Yy Tz /8*) - WQ(T,X)#Q(T,X;B*)
+E [po(T, X; B°)mo(T, X) | T] + E [po(T, X; 8" )mo(T, X) | X],

with po(t, @; 8%) = E [L/(Y,9(T; 8%)) - 89(T; 8)/88|T = t, X = x].
» Under some regularity conditions, they show that
Bow, — B 5 N(0, Vesr),

p2 = 0p(N~1/?) - rate-doubly

given that || — 7o|[p2 - [|[Z — pol

robust.



Double/Debiased Machine Learning (Chernozhukov et
al. 2018, Kallus et al. 2024)

» Designed mainly for discrete treatment cases;

» They used a ratio-type estimator for my — leads to an unstable
estimator of 3* for N not large enough.

m Automatic debiased machine learning (Chernozhukov, Newey,
Singh, 2022) regards mg as a whole, but it mainly designed for

B =E[mW,v)};

» The EIF can be computationally complicated in the general
treatment models.



Our method

Directly estimate mg by Tipnn, using deep neural networks;

Correct the bias in estimating 8* with Tpnn, by reweighting
TpnN using the covariate balancing property.



Our method

Directly estimate mg by Tipnn, using deep neural networks;

Correct the bias in estimating 8* with Tpnn, by reweighting
TpnN using the covariate balancing property.

Contributions:
» We do NOT need to estimate the EIF 7.

» The reweighting technique improves finite sample performance.

» We show our estimator is rate-doubly robust, v/N-consistent,
asymptotically normal and semiparametric efficient.

» We propose a simple inference procedure based on the weighted
bootstrap.



TDNN

» Identify mg:

Ty = arg m}n E[{7(T, X) — mo(T, X)}?]

= argmin <E[{7r(T, X))} 2/7r(t, x) - ‘m . dFT’X(t,ac)>

= arg min (E[{r(T, X)}*] - 2ErEx{n(T, X)})
» We obtain the DNN estimator, pnn, by minimising

2
72 T“X ]V(]V—l);llr(Ti’Xj)

over a class of deep neural networks (DNN) models for 7.



Bias introduced by DNN

Under some regularity conditions, we show that the bias-variance
trade-off Ls rate of convergence of the DNN estimators, Tpnn of 7o
and Bpnnw of 3%, are both N—s7/(2sx+d+1) . 1555 N slower than
N—1/2,
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Covariate Balancing

Covariate balancing property:

E{ro(T, X )u(T, X)} = / / u(t, z) dFx () dFr(t),

for any integrable function w: T' and X are weighted independent
with 7g.



Balanced Neural Network

» 7onn (T, X;), no covariate balancing property: for some u,

N
1 —~
ﬁ E TTDNN (Ti, XI)
i=1

u(Ti, X;) # m Zu(Ti,Xj).

i



Balanced Neural Network

>

» Re-balance it by Tenn (T, X:) := W;Tpnn(Ts, Xi), where 0;
solves
min ¥, D(w;) subject to
& it wistonn(Ti, X0)E(Ti, Xi) = w1y L §(Ts X5)



Balanced Neural Network

>

» Re-balance it by 7gnn(Th, X;) := @;7pnn (T, X;), where W;
solves

min ¥, D(w;) subject to
& it wistonn(Ti, X0)E(Ti, Xi) = w1y L §(Ts X5)

m D(v) is a distance measure from v to 1

m By choosing ¢ appropriately, we can achieve a debiased
estimator of 3*:

Bennw = aIL:}gID;}IDZWBNN Ty, X4)L(Yi, 9(T; B)) -
R



Choices of &

» Let L'(y, z) = 8L(y, 2)/0z.
» We show: in order to eliminate the bias, it is desirable to take

E(t’ w) = /“O(fﬂw;ﬁ*)
=K [L/(Y,9(T; 3)) - 89(T; 3")/0BIT =, X = x|

» By Taylor’s expansion,
po(t, z; B*) ~ po(t, =; Bonww )+ (t, =; Bonww ) (B —Bonww).

» Thus, we consider the following instrumental function:

£y a1 A(t, z; Bonww)
ftx)= | {@(t,m;BDNNW)} .



Intuition

» Recall

Holt,@; 8%) := E |L'(Y, g(T; 8%)) - 09(T; 8) /8BIT = 1, X = x| .
» By definition, 8* satisfies E [7o(T, X )uo(T, X; 8*)] = 0.
» The estimating function for BBNNW is

N
on(B) i= 3 D Fown(Th, Xi)L'(%; — o(T5; 8))99(Ts; 6)/08
=1

and ox(Bexyw) = O.
» The bias

Bias := HE [on(8Y)] H

1 & ;
E [NZmeNN(Ti,Xi)Mo(Ti,Xi;ﬁ )] H -
=1




» We have enforced that

N ) N N
T 1 T'HX T’L7X’L = S At 1\ T,X .
;w 7onn( 3 ) NN 1) 121112,1:7&]'5( 5 X1)

» As a result,

E[pn(B*)] =E

N
N Y Witonn (T, X;) o T/,Xriﬁ‘)}

N
N Y- Wirtonn(Ti X;) {10 (T, X3 B )—Qﬁ(Ti,X:‘)}}

N N
Y X _og(r,-,x,)} e

3lancing o P
E [Renn(Ti Xi) {10(Ti» X3 B*) — QE(T;, Xi)}Y] + E [0 (T, X)Q&(T, X)]
= E [{7snn(Tin Xi) — 1o (Ti, Xi) } {po (Ti, Xi5 B°) — QE(Ti, Xi) }]



Cross-fitting

» Randomly partition the sample into equal parts I,..., k.
> Take the final estimator to be Benyw = Yon; Bg})mw / K.
» Cross-fitting procedure:

l ~ . l ~(1 1)
_________ g “"4(1) (ieh)—> ’T}sll'N(Tt'Xi) """ > Bennw

~(— ~(=1)
. {/l( V(s Bonnw)

(1), ~(-1)
It (1 Bonnw)



Rate doubly robust condition

» Assumption 9. Let {u, {r, (u, (s, c" > 0 be some finite constants.

1/2
= B [supaco 60, (T, X 8) /(0808 7)|] " <
m Either one of the following conditions holds
Bc=0¢(+(>1/2
mc #0, CW+C# > 1/27 Cﬂ+<ﬁ +min{€/5)cu} > 1/27 C,B >0
m Suppose po > 0 and py = o((log N)~1), it holds that,

HA( k) (T, X; IBDNNW) po(T, X5 IBDNNW H < pyN~%,

(=k) S pONﬁ(u)

P2

— k ~(—k
Haﬂﬂ (T, X; ﬂ](:NI\)IW) aﬁﬂO(T;X;IBI(DNI\)IW)

3(=k)

[Foiw (T X) = mo(T, X) | < v,

» For binary ATE, c¢* = 0 and (, can be arbitrarily large. Reduces to
Cr+Cu>1/2.

» For binary QTE, less restrictive than (» + {g > 1/2, required in Kallus et
al. (2024, JMLR).



Asymptotic Normal and Inference

Under some regularity conditions, and the rate-doubly robust
assumption, we have

_ 1 X . _
Bennw — B = —szoliﬁ(YQ,Ti,XﬁB ) +op(N7Y2),

=1

and
= d
VN (ﬁBNNW - ﬂ*) — N(0, Vesr),
where £y = 8E [mo(T, X ) o (T, X; B)] /aBT‘B—ﬁ* is the Hessian
matrix, Veg := 3y 'E [1/}1/}1 2o ! attains the semiparametric
efficiency bound.
» We propose a weighted bootstrap method for inference.

» The inference method is theoretically validated.



Binary Treatment

>» DGP-B:

X;=034+04U,;, j=1,...,d and T = 1(U: < X " y);
T U2 T
Y(0) =1(Uy, < X 'Yb)ﬁ + 1(Uyo > X 75)Uyo;

2
203,

m + 1(Uy0 >1-— XT‘yb)2Uy0.

Y(1) = 1(Uy, <1- X T)



Binary Treatment

» Left panel: Box plots of the estimated ATE using different
methods over 100 replications of each sample size setting with
d = 50. Right panel: Estimated QTE and the respective 95%
confidence interval across different quantile levels on a
simulated data set with N = 2000 and d = 50.
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Binary Treatment (ATE)

Table: Bias, SE, RMSE of estimated ATE and coverage probability (CP),
average width (AW) of the respective 95% confidence interval, using
BNNW or AIPW estimators over 100 replications of simulated dataset
with a binary treatment across different sample sizes.

AIPW (Chernozhukov et al., 2018) BNNW
N Bias SE RMSE CP AW Bias SE RMSE CP AW

300 0.0781 0.070 0.0849 0.69 0.235 0.0022 0.061 0.0512 0.98 0.258
500 0.0670 0.048 0.0698 0.71 0.187 0.0040 0.052 0.0406 0.96 0.202
1000 0.0349 0.036 0.0419 0.82 0.140 0.0094 0.033 0.0278 0.95 0.144
5000 0.0097 0.017 0.0157 0.91 0.065 0.0049 0.017 0.0144 0.94 0.065




Binary Treatment (QTE)

LDML (Kallus et al., 2024) BNNW

N T Bias SE RMSE CP AW Bias SE RMSE CP AW

0.1 0.0064 0.073 0.0729 0.97 0.410 0.0219 0.038 0.0440 0.98 0.225

0.25 0.0235 0.189 0.1905 0.91 0.646 0.0123 0.087 0.0874 0.97 0.410

300 0.5 0.0204 0.302 0.3023 0.82 1.020 0.0413 0.137 0.1435 1.00 0.579
0.75 0.0055 0.210 0.2102 0.95 0.775 0.0280 0.098 0.1022 0.97 0.464

0.9 0.0167 0.154 0.1550 0.99 0.972 0.0391 0.063 0.0739 0.96 0.322

0.1 0.0115 0.043 0.0443 0.99 0.292 0.0033 0.022 0.0223 0.98 0.131

0.25 0.0086 0.137 0.1377 0.88 0.458 0.0059 0.071 0.0712 0.96 0.297

500 0.5 0.0152 0.242 0.2424 0.88 0.888 0.0239 0.119 0.1209 0.96 0.457
0.75 0.0126 0.192 0.1925 0.89 0.616 0.0017 0.075 0.0750 0.98 0.342

0.9 0.0006 0.117 0.1170 0.98 0.570 0.0012 0.045 0.0454 0.99 0.225

0.1 0.0062 0.021 0.0219 1.00 0.142 0.0065 0.017 0.0183 0.90 0.073

0.25 0.0122 0.076 0.0772 0.94 0.241 0.0119 0.043 0.0447 095 0.196

1000 0.5 0.0077 0.161 0.1608 0.88 0.554 0.0299 0.076 0.0813 0.97 0.332
0.75 0.0153 0.077 0.0789 0.93 0.325 0.0030 0.047 0.0468 1.00 0.211

0.9 0.0077 0.051 0.0519 0.95 0.235 0.0051 0.033 0.0331 0.96 0.147




Continuous Treatment

The generating process for the dosages, treatments and responses of
ITHDP-continuous dataset are,

T =

3X 3 X3, X4, X 5. . X

1 maX{ 3y 4, 5} + 3tanh % —6+¢€

1+ X, 0.2+m1n{X3,X4,X5} ’jl‘

T = (14 exp(T)) 4,

Y*(t) — h(t, X) + €9,

h(t,X) = (0.8 + 3.2t — 3.2t2){ tanh <5Z]|€j72|1> N
2

0.2(X; — X5)
3 €Xp s )
0.1+ m1n{X2, Xg, X4}
where €; and € are two independent standard normal random

variables, X = (X1,...,X2s) ', 71 = {3,6,7,8,9,10,11,12,13, 14}
and J, = {15, 16,17, 18, 19, 20, 21, 22, 23, 24}.




Continuous Treatment

Table: The ABias, ASE and ARMSE of the estimated average dosage
responses and quantile dosage responses for various quantiles 7 over 100
replications of the semi-synthetic IHDP dataset with a continuous
treatment.

QDRF
7=01 7=025 7=05 7=075 7=0.9

ABias 0.215 0.391 0.198 0.203 0.198 0.212
BNNW ASE 0.103 0.329 0.153 0.109 0.105 0.124
ARMSE  0.247 0.524 0.256 0.236 0.231 0.255

ABias 0.619 1.173 0.516 0.326 0.254 0.226
DNNW  ASE 0.078 0.251 0.131 0.098 0.094 0.119
ARMSE 0.628 1.211 0.539 0.347 0.278 0.266

ABias 0.605 1.405 0.643 0.295 0.253 0.206
GOE ASE 0.398 0.924 0.591 0.500 0.545 0.725
(Sieve) ARMSE 0.736 1.703 0.885 0.586 0.605 0.754

ADRF
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