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Revisit some common treatment effect analysis
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Assumption 1 (Unconfoundedness).
Y �(t) ? T j X for all t 2 T � R.

T Treatment effect Identification

f0; 1g ATE: E[Y �(1)� Y �(0)] E
h

TY
P(T=1jX)

i
� E

h
(1�T )Y

1�P(T=1jX)

i
General ADRF: E[Y �(t)] E

h
dFT (T )

dFT jX (T jX)
Y jT = t

i
Nuisance parameter (Propensity Scores):
P(T = 1jX) or dFT jX(T jX) (Generalised).
Challenges:

➤ Unstable ratio-type estimation: Sensitive
to small errors in estimating the
propensity scores;

➤ X 2 Rd, d is usually large:

Parametric models ! Model
misspecifications
Nonparametric estimation ! Bias
and/or curse of dimensionality



A unified framework

We consider a unified treatment model:

➤ L(y; z) : R� R! [0;1): a general (possibly non-smooth) loss
function; e.g., (y � z)2=2;

➤ g(t;β): a user-specified parametric dose-response function
indexed by a p-dimensional parameter β = (�0; �1; : : : ; �p�1)

>;

➤ For discrete T 2 T = f0; : : : ; Jg, g(t;β) =PJ
j=0 �j1(t = j);

e.g., for binary T , g(t;β) = �0 � (1� t) + �1 � t.

Then β� = (��0 ; �
�
1 ; : : : ; �

�
p�1)

> is defined by:

β� := argmin
β2Rp

Z
T
E
�
L(Y �(t); g(t;β))

�
dFT (t):



A general causal framework

This framework covers a broad class of treatment effect models in
the literature.

L(y; z) g(t;β�)

(y � z)2=2 EfY �(t)g
(y � z) � f� � 1(y � z � 0)g for � 2 (0; 1) the � -th quantile of Y �(t)

�y log z � (1� y) log(1� z) for y; z 2 f0; 1g PfY �(t) = 1g

➤ Binary case (g(t;β) = �0 � (1� t) + �1 � t): ��1 � ��0 is
row 1: Average Treatment Effect (ATE)
row 2: Quantile Treatment Effect (QTE)
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Identifying the general treatment effect parameter

➤ Y �(t) cannot be observed simultaneously for all t.

➤ Use the stablised weight:

�0(T;X) :=
dFT (T )

dFT jX(T jX)
=
dFT (T )dFX(X)

dFTX(T;X)
:

➤ Identify: β� = argmin
β2Rp

E[�0(T;X)L(Y; g(T ;β))], which can be

estimated by

bβ := argmin
β2Rp

NX
i=1

b�(Ti;Xi)L(Yi; g(Ti;β)) ;

given an estimator b�.



Double/Debiased Machine Learning (Chernozhukov et
al. 2018, Kallus et al. 2024)

➤ b�DML solves the efficient influence function (EIF) score:PN
i=1

b fβ; b�; b�; Ti; Yi;Xig = 0; where b estimates the EIF

 (Y; T;X;β�; �0; �0) := �0(T;X)h(Y; T ;β�)� �0(T;X)�0(T;X;β�)

+ E
�
�0(T;X;β�)�0(T;X) j T

�
+ E

�
�0(T;X;β�)�0(T;X) j X

�
;

with �0(t;x;β�) = E
�
L0(Y; g(T ;β�)) � @g(T ;β�)=@βjT = t;X = x

�
.

➤ Under some regularity conditions, they show that

bβDML � β� d! N(0; Veff) ;

given that kb� � �0kP;2 � kb�� �0kP;2 = op(N
�1=2) – rate-doubly

robust.



Double/Debiased Machine Learning (Chernozhukov et
al. 2018, Kallus et al. 2024)

➤ Designed mainly for discrete treatment cases;

➤ They used a ratio-type estimator for �0 – leads to an unstable
estimator of β� for N not large enough.

Automatic debiased machine learning (Chernozhukov, Newey,
Singh, 2022) regards �0 as a whole, but it mainly designed for
� = E[m(W;
)];

➤ The EIF can be computationally complicated in the general
treatment models.



Our method

1 Directly estimate �0 by b�DNN, using deep neural networks;

2 Correct the bias in estimating β� with b�DNN, by reweightingb�DNN using the covariate balancing property.

Contributions:
➤ We do NOT need to estimate the EIF  .

➤ The reweighting technique improves finite sample performance.

➤ We show our estimator is rate-doubly robust,
p
N -consistent,

asymptotically normal and semiparametric efficient.

➤ We propose a simple inference procedure based on the weighted
bootstrap.
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b�DNN

➤ Identify �0:

�0 =argmin
�

E[f�(T;X)� �0(T;X)g2]

= argmin
�

 
E[f�(T;X)g2]� 2

Z
�(t;x) � dFT (t)

dFT jX(tjx) � dFT;X(t;x)

!
=argmin

�

�
E[f�(T;X)g2]� 2ETEXf�(T;X)g

�
➤ We obtain the DNN estimator, b�DNN, by minimising

1

N

NX
i=1

�(Ti;Xi)
2 � 2

N(N � 1)

X
j 6=i

�(Ti;Xj)

over a class of deep neural networks (DNN) models for �.



Bias introduced by DNN

Under some regularity conditions, we show that the bias-variance
trade-off L2 rate of convergence of the DNN estimators, b�DNN of �0
and bβDNNW of β�, are both N�s�=(2s�+d+1) � log5N , slower than
N�1=2.
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Covariate Balancing

Covariate balancing property:

Ef�0(T;X)u(T;X)g =

Z Z
u(t;x) dFX(x) dFT (t) ;

for any integrable function u: T and X are weighted independent
with �0.



Balanced Neural Network

➤ b�DNN(Ti;Xi), no covariate balancing property: for some u,

1

N

NX
i=1

b�DNN(Ti;Xi)u(Ti;Xi) 6=
1

N(N � 1)

X
j 6=i

u(Ti;Xj) :

➤ Re-balance it by b�BNN(Ti;Xi) := bwib�DNN(Ti;Xi), where bwi

solves8<:min
PN

i=1D(wi) subject to
1
N

PN
i=1wib�DNN(Ti;Xi)ξ(Ti;Xi) =

1
N(N�1)

P
j 6=i ξ(Ti;Xj) ;

D(v) is a distance measure from v to 1
By choosing � appropriately, we can achieve a debiased
estimator of β�:

bβBNNW := argmin
β2Rp

NX
i=1

b�BNN(Ti;Xi)L(Yi; g(Ti;β)) :
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Choices of ξ

➤ Let L0(y; z) = @L(y; z)=@z.
➤ We show: in order to eliminate the bias, it is desirable to take

ξ(t;x) = �0(t;x;β
�)

:= E
h
L0(Y; g(T ;β�)) � @g(T ;β�)=@βjT = t;X = x

i
:

➤ By Taylor’s expansion,

�0(t;x;β
�) � �0(t;x; bβDNNW)+@β�0(t;x; bβDNNW)(β�� bβDNNW):

➤ Thus, we consider the following instrumental function:

bξ(t;x) =
0@ b�(t;x; bβDNNW)

vec
nd@β�(t;x; bβDNNW)

o1A :



Intuition

➤ Recall

�0(t;x;β
�) := E

h
L0(Y; g(T ;β�)) � @g(T ;β�)=@βjT = t;X = x

i
:

➤ By definition, β� satisfies E
�
�0(T;X)�0(T;X;β�)

�
= 0:

➤ The estimating function for bβBNNW is

'N (β) :=
1

N

NX
i=1

b�BNN(Ti;Xi)L
0(Yi � g(Ti;β))@g(Ti;β)=@β ;

and 'N ( bβBNNW) = 0.
➤ The bias

Bias :=



E �'N (β�)

�



=







E
24 1

N

NX
i=1

bwib�DNN(Ti;Xi)�0(Ti;Xi;β
�)

35





 :



➤ We have enforced that

1

N

NX
i=1

bwib�DNN(Ti;Xi)ξ(Ti;Xi) =
1

N(N � 1)

NX
j=1

NX
l=1;l 6=j

ξ(Tj ;Xl):

➤ As a result,



Cross-fitting

➤ Randomly partition the sample into equal parts I1; : : : ; IK .

➤ Take the final estimator to be bβBNNW =
PK

k=1
bβ(k)BNNW

.
K:

➤ Cross-fitting procedure:



Rate doubly robust condition

➤ Assumption 9. Let ��; ��; �u; �� ; c� � 0 be some finite constants.

E
h
supβ2�



@2�0j(T;X;β)=(@β@β>)


2i1=2 � c�.

Either one of the following conditions holds
c� = 0, �� + �� � 1=2;
c� 6= 0, �� + �� � 1=2, �� + �� +minf�� ; �ug � 1=2, �� > 0;

Suppose �0 > 0 and �N = o((logN)�1), it holds that,


b�(�k)(T;X; bβ(�k)
DNNW)� �0(T;X; bβ(�k)

DNNW)




P;2

� �NN
��� ;



d@β�(�k)(T;X; bβ(�k)

DNNW)� @β�0(T;X; bβ(�k)
DNNW)






P;2

� �0N
��u ;


b�(�k)DNNW(T;X)� �0(T;X)





P;2

� �NN
��� ;




bβ(�k)
DNNW � β�




 � �0N
��� :

➤ For binary ATE, c� = 0 and �u can be arbitrarily large. Reduces to
�� + �� � 1=2.

➤ For binary QTE, less restrictive than �� + �� � 1=2, required in Kallus et
al. (2024, JMLR).



Asymptotic Normal and Inference

Under some regularity conditions, and the rate-doubly robust
assumption, we have

bβBNNW � β� = � 1

N

NX
i=1

��1
0  (Yi; Ti;Xi;β

�) + oP (N
�1=2);

and p
N
� bβBNNW � β�

�
d! N(0; Ve�);

where �0 = @E
�
�0(T;X)�0(T;X;β)

�.
@β>

���
β=β�

is the Hessian

matrix, Ve� := ��1
0 E

h
  >

i
��1
0 attains the semiparametric

efficiency bound.
➤ We propose a weighted bootstrap method for inference.
➤ The inference method is theoretically validated.



Binary Treatment

➤ DGP-B:

Xj = 0:3 + 0:4Uxj ; j = 1; : : : ; d and T = 1(Ut <X>γb);

Y (0) = 1(Uy0 �X>γb)
U2
y0

X>γb
+ 1(Uy0 >X>γb)Uy0 ;

Y (1) = 1(Uy1 � 1�X>γb)
2U2

y1

1�X>γb
+ 1(Uy0 > 1�X>γb)2Uy0 :



Binary Treatment

➤ Left panel: Box plots of the estimated ATE using different
methods over 100 replications of each sample size setting with
d = 50. Right panel: Estimated QTE and the respective 95%
confidence interval across different quantile levels on a
simulated data set with N = 2000 and d = 50.
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Binary Treatment (ATE)

Table: Bias, SE, RMSE of estimated ATE and coverage probability (CP),
average width (AW) of the respective 95% confidence interval, using
BNNW or AIPW estimators over 100 replications of simulated dataset
with a binary treatment across different sample sizes.

AIPW (Chernozhukov et al., 2018) BNNW

N Bias SE RMSE CP AW Bias SE RMSE CP AW

300 0.0781 0.070 0.0849 0.69 0.235 0.0022 0.061 0.0512 0.98 0.258
500 0.0670 0.048 0.0698 0.71 0.187 0.0040 0.052 0.0406 0.96 0.202
1000 0.0349 0.036 0.0419 0.82 0.140 0.0094 0.033 0.0278 0.95 0.144
5000 0.0097 0.017 0.0157 0.91 0.065 0.0049 0.017 0.0144 0.94 0.065



Binary Treatment (QTE)

N �
LDML (Kallus et al., 2024) BNNW

Bias SE RMSE CP AW Bias SE RMSE CP AW

0.1 0.0064 0.073 0.0729 0.97 0.410 0.0219 0.038 0.0440 0.98 0.225
0.25 0.0235 0.189 0.1905 0.91 0.646 0.0123 0.087 0.0874 0.97 0.410

300 0.5 0.0204 0.302 0.3023 0.82 1.020 0.0413 0.137 0.1435 1.00 0.579
0.75 0.0055 0.210 0.2102 0.95 0.775 0.0280 0.098 0.1022 0.97 0.464
0.9 0.0167 0.154 0.1550 0.99 0.972 0.0391 0.063 0.0739 0.96 0.322

0.1 0.0115 0.043 0.0443 0.99 0.292 0.0033 0.022 0.0223 0.98 0.131
0.25 0.0086 0.137 0.1377 0.88 0.458 0.0059 0.071 0.0712 0.96 0.297

500 0.5 0.0152 0.242 0.2424 0.88 0.888 0.0239 0.119 0.1209 0.96 0.457
0.75 0.0126 0.192 0.1925 0.89 0.616 0.0017 0.075 0.0750 0.98 0.342
0.9 0.0006 0.117 0.1170 0.98 0.570 0.0012 0.045 0.0454 0.99 0.225

0.1 0.0062 0.021 0.0219 1.00 0.142 0.0065 0.017 0.0183 0.90 0.073
0.25 0.0122 0.076 0.0772 0.94 0.241 0.0119 0.043 0.0447 0.95 0.196

1000 0.5 0.0077 0.161 0.1608 0.88 0.554 0.0299 0.076 0.0813 0.97 0.332
0.75 0.0153 0.077 0.0789 0.93 0.325 0.0030 0.047 0.0468 1.00 0.211
0.9 0.0077 0.051 0.0519 0.95 0.235 0.0051 0.033 0.0331 0.96 0.147



Continuous Treatment

The generating process for the dosages, treatments and responses of
IHDP-continuous dataset are,

eT =
3X1

1 +X2
+

3maxfX3; X4; X5g
0:2 + minfX3; X4; X5g + 3 tanh

 
5
P

j2J1 Xj

jJ1j

!
� 6 + �1

T = (1 + exp( eT ))�1;
Y �(t) = h(t;X) + �2;

h(t;X) = (�0:8 + 3:2t� 3:2t2)

(
tanh

 
5

P
j2J2 Xj

jJ2j

!
+

3 exp

 
0:2(X1 �X5)

0:1 + minfX2; X3; X4g

!)
;

where �1 and �2 are two independent standard normal random
variables, X = (X1; : : : ; X25)

>, J1 = f3; 6; 7; 8; 9; 10; 11; 12; 13; 14g
and J2 = f15; 16; 17; 18; 19; 20; 21; 22; 23; 24g.



Continuous Treatment

Table: The ABias, ASE and ARMSE of the estimated average dosage
responses and quantile dosage responses for various quantiles � over 100
replications of the semi-synthetic IHDP dataset with a continuous
treatment.

ADRF
QDRF

� = 0:1 � = 0:25 � = 0:5 � = 0:75 � = 0:9

ABias 0.215 0.391 0.198 0.203 0.198 0.212
BNNW ASE 0.103 0.329 0.153 0.109 0.105 0.124

ARMSE 0.247 0.524 0.256 0.236 0.231 0.255

ABias 0.619 1.173 0.516 0.326 0.254 0.226
DNNW ASE 0.078 0.251 0.131 0.098 0.094 0.119

ARMSE 0.628 1.211 0.539 0.347 0.278 0.266

ABias 0.605 1.405 0.643 0.295 0.253 0.206
GOE ASE 0.398 0.924 0.591 0.500 0.545 0.725
(Sieve) ARMSE 0.736 1.703 0.885 0.586 0.605 0.754



Thank You!


