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Motivation

» Law of large numbers (LLN) and central limit theorems (CLT)
are indispensable for econometrics and statistics

» Spatial econometrics: LLN/CLT for spatially correlated data

» there are some LLN/CLT in the literature: linear-quadratic
form, mixing, near-epoch dependence (NED)

» they are not convenient enough or some strong conditions are
needed for some applications

» We aim to develop a weak spatial dependence concept that is
more convenient to use than above concepts, especially NED



Tools for Spatial Econometrics: Linear-Quadratic
Forms

» linear-quadratic forms: Kelejian and Prucha (1998, 2001); Lee
(2004, 2007); Yu et al. (2008); ....

» €;'s are independent, €, = (€1, - ,€nn)": € A€, + by
» useful for linear models (Spatial autoregressive (SAR) model)
Y, = AWoYn + XnB +€n = Yo = (In — AW,) H(XnB + €n)

» appears in the log-likelihood function, GMM, Moran’s I test
statistics. e.g., (Y, — AW, Y, — X B8) P (Y — AW, Y, — X,.58)

» inconvenient for
m many nonlinear estimators (quantile estimator, Huber estimator)

m nonlinear spatial models (Tobit model)



Tools for Spatial Econometrics: Mixing

» mixing is widely used in time series and panel data

» however, spatial mixing (Jenish and Prucha, 2009) is not
widely used in spatial econometrics, due to:

m hard to establish, as it involves supremum over two o-fields:

a(A,B)= sup |P(ANB)— P(A)P(B)|
AEA,BEB

m not preserved under infinity summations (e.g., Z?:l W;i5Y;)

» Xu and Lee (2023): the mixing property of linear spatial
processes.

» For nonlinear processes, as far as we know, no work so far.



Tools for Spatial Econometrics: Near-Epoch
Dependence

An Example: y; = €; + pe;_1 + p°€s_o + -+ -1 y; is mainly affected
by €:_s for small s, and the contribution of all €, (large s) is small.

Definition. {Z; »,% € Dn,n > 1} is generated by {v; n,% € Dp,n >
1}. {Z;,} is said to be LP-near-epoch dependent (NED) on {v; »}
if

| Zin — E[Z; p|vjn, dij < 3]||Lp < Y(s) > 0 as s — oo.




Tools for Spatial Econometrics: Near-Epoch
Dependence

» (spatial) near-epoch dependence (NED): Jenish and Prucha
(2012), Xu and Lee (20154, 2018), Qu and Lee (2015), Qu et al.
(2017), Liu et al. (2022), Xu et al. (2022, quantile regression).

» Its applications are wide, but

m sometimes strong moment conditions are needed to preserve
NED

m Limited to L?-NED, as conditional expectation might not be
easy to calculate



What’s Our Work?

» We aim to develop a weak spatial dependence concept that is
more convenient to use than NED

» We generalize the concept of functional dependence (Wu, W.B.,
2005, PNAS) to the settings of spatial econometrics:

m irregular lattice in R?, triangular arrays.

» We establish a set of theoretical tools for functional dependent
data:

m moment inequality, exponential inequality, LLN, CLT

m properties of functional dependence under various
transformations.



Spatial Functional Dependence



Functional Dependence Measure

» Suppose there are some individuals (persons, cities, countries,
etc, also called spatial units, nodes), and they are located in a
lattice D,, C R4.

» For a cross-sectional data with n individuals, |D,| = n.

» Let € = {€;,% € Dp,n > 1} be independent RP<-valued
triangular array

Yi,n =Gin (el,n: T ;en,n) = Gin (en) ) (1)



Functional Dependence Measure

Yti,n = Gin (En) .

» Vi€ D,, let e:-‘m be an i.i.d. copy of €; », and ef’n is
independent to all €;,,5 € Dj.

» VI C Dy, define €1 = e;-*’n ifireland epnr=c¢€pnift ¢ I,
denote €, 1 = (€;n,1)icD,-

» Yin1 = gin (€n,1) denotes a coupled version of ¥; , on I.

Definition. Let p > 1 be a constant. Vn > 1 and I C D, the LP
spatial FDM is

6}3 (7’1 I) n) = ||Y;l,n - Y;,’,n,I

Lp




Functional Dependence Measure

The 8, (2,7,n) = ||Yin — Yin,1||» measures the influence of
{ejn:j€l}onY;,: if {€;, :7 € I} is replaced by its i.i.d. copy
{€; » : 7 € I} , how much Y;, will change under LP-norm.

gi,n(') Gin ()




Functional Dependence Coefficient

Definition. {Ym,i € Dp,n > 1} is said to be LP-functionally depen-
dent on € = {€ n,1 € Dy,n > 1} if and only if the LP-functionally de-
pendent coeffictent

Ay(s) = sup sup 6y (i, {7 € Dy : dij > s} ,n) —0 ass—o0. (2)
n 1€D,




Functional Dependence Coefficient

* € n

*€3.n

*€6.n *€4n

I={jeD,:d;=s}

-
Vgl

.
* €y,
*€5.n
]
PRS- >
€1n
B
*€6.n .e; *€4n
n
gra(+)
Yinr




Functional Dependence Coefficient

A,(s) = sup sup 6, (i,{j € D, :d;; > s},n) — 0 ass— oo.
n 1€D,

» lim, o, Ap(s) = 0: the total impacts from individuals far away can
be arbitrarily small uniformly in ¢ and n.

» By Lyapunov’s inequality, if Y; ,, is LP-FD, it is also L?-FD for all
g €[Lp].

> “monotonicity”: Ap(s) < 3A,(5) for any s > 5.



Example: SAR Model

Yl,n F (}\wl.,nYn + t'51,71)

: =Y, =F(QW,Y, +¢€,) = : ,
Yn,n F (}"wn.,nyn + En,n)
(3)
» W, = (Wij,n)nxn is non-stochastic spatial weights matrix
B w; n: the ith row of W,

> F is a Lipschitz function: |F (e*) — F (e)| < Le® — ¢

» Assume ( = L |A|sup,, ||[Wh]|., < 1:
m Eq.(3) has a unique solution = Yin= in(€n)



Example: SAR Model

Y, = F(AW,Y, +¢€,).
> Let My, = L(I, — L|A||W,|) ™", where |Wa| = (|wijn|)nxn-

» Then

n

1 2
1Y n(e)) = Yin(el Z mlen — el
=1



Example: SAR Model

(2)|.

(1)
€5~ €n

n
1 2
Yin(e) = Yin(eP)] < 3 My
=1
» the LP-FD coeffictent
Ap(s) < (2 sup ||€j,n||p> sup  » Mijn.
7,n %,n JEDn:d;j>s

» Suppose €; ,’s are independent over ¢ and uniformly
LP-bounded.

Wij,n 75 0 only if dij < d_O:
Ay (s) < CCS/‘{O — 0 ass— oo

|wi]-,n| < cdi_jo‘ for some constants ¢ > 0 and o > d.

Ap(s) <O (s_(o‘_d) (log s)a_d> —0 ass— oo.



SAR Models: Extensions

» In most of cases: ¢, = Xz‘,n,B + ;. We can allow {€;,} to be
dependent by

m assuming that {¢; ,,} is functionally dependent on another
random field {n; »};

B A, (s) <O(s (> D(logs)* 4) + C x AS (s/2).

» We also calculate the FDM for
m the threshold SAR models

m functional-coefficient SAR models
m smooth-coefficient SAR models
m SAR models with stochastic weights matrices



Properties of Functional Dependence



A Moment Inequality

Let Sn =2 icp, Yin-

Theorem. For p > 2, if the LP-FD coefficient A,(s) = O (s"“) for

some/ﬂ>%ass—>oo,

18, — ESnllL < Cv/n.

» The rate is the same as the i.i.d. case;

> For SAR models, when |w;;»| < cd®, we have
Ap(s) < O (s7(@9) (log s)*~%)

> If > 1.5d, then Ap(s) = O (s7*)



An Exponential Inequality

» Exponential inequality is useful in semi/nonparametric
econometrics, high-dimensional statistics, machine learning.

Theorem. Assume {Y;,} is LP-functionally dependent on {€;,} with
Ap(s) < O(p*)O (s %) for some k > £ and v > 0. Denote a = 1_32V.
Then V4 > 0,

P (|Sn —ES,| > n6) < C;exp (—C’gno‘/25°‘> .

» SAR: Ap(s) < (25up;, [l€j,nllp) SUP; n 2 jeDpidy;>s Mijms
> O(s7*): |wij,n| < cd;;* for some a > 1.5d;

>» O(p”):
when ¢; , is subexponential, v =1, n®/“ =n
when ¢; , is sub-Gaussian, v = %, n®/2 = n1/2
/2

a/2 1/3

when ¢; , is uniformly bounded, v =0, n%/? =n



An Exponential Inequality

P (]S, —ES,| > nd) < Ciexp (—an“/26°‘> .

» The proof is based on the moment inequality and Taylor
formula for e®

» Our result: n®/? = nt/(+2v);
w rate in Xu and Lee (2018): nl/(2d+2+v)
» spatial FD: allow w;; < dfja?

~

m rate in Xu and Lee (2018) requires: w;; < exp(—dg;)

» When ¢; 5, is uniformly bounded, v = 0.

m the decaying rate with respect to n is the same as the standard
Hoeffding’s inequality



Law of Large Numbers

Theorem. If (i) {Y;,} is uniformly LP-bounded for some p > 1,
and (ii) {Yi,} is L*-FD on {€; »}, i.e., lims ,o, A1(s) = 0, then

1
Z (5, —ES,) Bo.
n




Central Limit Theorem

Theorem. Denote 02 = Var (S,), if

(i) Y5 is uniformly LP-bounded for some p > 2,
(i) liminf, .o 02/n > 0,

(iii) Ag(s) = O (s"‘) for some k > ¢ as s — o0,

then
S, — ES,

d
N (0,1).
AN

» For SAR models with w;; < di_j"‘:

m FD CLT requires: o > 1.5d;

m the NED CLT requires: a > 2d;

» By the Cramér—-Wold device, we can generalize the CLT to the
multivariate case.



Conditional Functional Dependence



Conditional Spatial Functional Dependence

» (Q,F,P): the underlying probability space; C is a sub-o-field of F.
» ¢;,’s conditionally independent given C.

» conditional on C, €], is an i.i.d. copy of €; .

» For aset I C Dy, define €; 1 = pifi€l,and € =€ if e ¢ 1.

» Yin = Gin (€n); Yin,1 = Gisn (€n,1) is a coupled version of Y; ,, on I.

Definition. For p > 1,n > 1 and I C D, define the conditional FDM
C(; — — 1/17
5p (Z; I; 77,) = H}/z,n - Yi,n,IHLp,c = (Epfz,n - z K I|p|c)

And {Y;,,i € D} is C-LP-functionally dependent on € = {¢; ,,,1 € D, }
if and only if

Ag()—supsupé (i,{j:dist},n)go as s — 0.
n>1t1€Dy,




Spatial Panel Data Models



Spatial Panel Data Model

» T periods, N spatial units in Dy C R%.

» for individual 7 at time ¢, we regard (¢,t) as a point in R4+1:
(i,t) € Dyr = {(Z,t) eRIF: 4 € Dy,t=T,T — 1,}

dit;jr = || (1,1) = (4, 7)., = max {1?,?;‘(,,'”@ — Tkl [t = TI} :

» Spatial dynamic panel data (SDPD) model:
Yyt = \WWnYne +YYNnt—1 + oWNYni—1 + XneB + piely +vn + Ve

» We calculate the spatial FDM conditional on (u, vy):
C=VR_ o Vw_io(u,vn)



Spatial Panel Data Model

Assumptions:
|wij,n| < cd;;* for some constants ¢ > 0 and a > d.
supy [|Walle < 1and [A[+ |y +|p| < 1. And { = |7|+|p‘| < 1.
SUpy,7 SUP; |[€itl| Lo o < 00 a.s. for some p > 1.

Conditional on C, (z.,,v;)’s are independent over ¢ and ¢.

Proposition.  {y; : (4,t) € Dy7} is C-LP-FD on {e;} with
AS(s)=0 (s*(o‘*d) (log s)a_d) a.s. as § — 0.




A Functional Dependence under Nonlinear Transformations



Nonlinear Transformations in Spatial Econometrics

In spatial econometrics, we need to deal with a lot of nonlinear
transformations about spatial random variables:

» In the log-likelihood function based on normal distribution: 32
» censored data, binary data, quantile regression: 1(y > 0)

» Least absolute deviation: |y|

> Spatial Tobit model: #(y), In &(y), £4, ...

» Huber estimator: max(0, z), or min(1, max(0, z))

» variance estimator: y? or yz



FDM under Nonlinear Transformations

H; , is a function:

[ Hin (4) = Hin (¥°)]] < Bin (9,9°) ly — 9|l

Denote Z;n = Hipn (Yin).

Proposition. If B;,(y,y*) < C < oo, then dz,(%,7,n) <
Céyp (1,5,m) and Az, (s) < CAyp (s).

P

» Examples. H(z) = ¢(z), H(z) = max(z,0), H(z) = |z|,
H(z) = min(1, max(0, z))



FDM under Nonlinear Transformations

Denote Z; n, = H;n (Yin)

[Hin (y) = Hip (¥°)[| < Bin (v, %) [ly — ¥°|l

Proposition. Suppose B; , (y,¥°*) < C(||lyl|* + ||y*||* + 1) for some
a > 1. The constants p,q,7 > 1l satisfy p ! =q 1+ 71 If{Vn}
is L%-FD on {€;,} and SUP, ;e D, |Yin| Lar < 00, then Af (s) <
ClA}; (8)

» Since g > p, this prop allows us to establish FD of lower order
using FD of higher order. The order of Af (s) and A;/ (s) are
the same.

» Examples. H(z) = z2,
\1n<I>(:1;1) —In §($2)| S C(’fl)l‘ + ‘.’132’ + 1)‘.’121 — T2



FDM under Nonlinear Transformations

Denote Z; , = H;» (Vi)

[Hin (y) = Hin (4°)[| < Bin (3, 9°) [ly — 4"l

Proposition. Suppose B;, (v,y°) < C(|lyll*+|ly°||*+1) fo
some a > 1 and sup, ;cp, ||Yin|, < oo for some g satisfying

g > max{(a + 1)p, p‘%"l}, where p > 1. Then

1

D7 (s) < Cay (s)\o o7 P/ paepmr),

» This proposition allows us to calculate L FDM of Z using L?

FDM of Y, but the decreasing rate is slower, as 2= <1

» NED has a similar property



FDM under Nonlinear Transformations

Proposition. Denote Z;, =1 (Y;, > 0). Suppose the probability
density functions of {Yi,n} are uniformly bounded in ¢ and n. Then
there exists a constant C > 0 such that

Z Y 1 +1
AZ (s) < CAY (s)V )




Comparison of Functional Dependence and NED



Relationship between Spatial FD and NED

Definition. For some p > 1, Z = {Z; »,1 € D,,n > 1} said to be
LP-near-epoch dependent on € = {¢; ,,7 € Dy, n > 1} if

with lim; ., % (s) = 0.

Zim —E(Zinlejn, dij < 8)|| < P(s)

Lr —

» NED: every spatial unit is mainly affected by the €;,, of its
close neighbors

» spatial FD: the impacts of the ¢;,’s faraway are small
» The ideas of these two concepts are similar.

» What’s the relationship between FD and NED?



Relationship between Spatial FD and NED

Theorem. (1) When ¢; ,,’s independent, LP-NED coefficient < L?-
FD coefficient:

€j,nr dij < 8)

Z’i,n - E(Zz,n

<Ay (s).

§) = sup >
Vs (5) = sup| .

(2 IfY;, = YDy, Wijn€sn, Where w;;,’s are non-stochastic coef-
ficients and ¢; ,’s are independent, then

Ap(s) < 29p ().

» When €; ,’s are NOT independent, the above conclusion might
not hold.



Relationship between Spatial FD and NED

» Spatial FDM is more convenient to calculate than spatial NED,
especially under nonlinear transformations and p > 2.

» It usually requires weaker conditions to establish a CLT and an
exponential inequality by using FDM.
m For CLT, it only requires o > 1.5d under FDM instead of
a > 2d under NED.

m The exponential inequality under FDM enjoys both less
restrictive conditions and faster decaying rate.



B Network Function Dependence



Function Dependence in Network Data

» 1,2,...,n are n nodes in a network;

» 4’s might not be located in a Euclidean space R¢;
m e.g., financial and social networks

» the order of 1,2,...,n can be arbitrary;

» Let e = {€;,:1<i<m,n>1} be independent RP-valued
triangular array

Yin = gin (€10, 1 €nn) = Gimn (€n) - (4)



Definition

>» Let e;,n be an i.i.d. copy of €;,, and E;,n is independent to €; ,
for any 7 # 7.

» Denote Y; , ; as the coupled version of Y; , with €;, replaced
by its i.i.d. copy €}, i.e.,

Jm?

P *
-Yi,n,j =Gin (El,n: Ty €5—1n, Ej,n) €irin, " ;en,n> .

Definition. Let p > 1 be a constant. Define the functional depen-
dence measure as

Spin (4,9) = Vi = Yimsll o - (5)

It measures the impact of €;, on Y; .




Definition

» Recall
Opn (4,9) = |Yin — Yin,j

Lp-

Definition. For p > 1 and ¢ > 1, {Y;,} is said to be (L?,g)-
functionally dependent on {¢;,} if

for some g > 1.



Definition

» For SAR model, 6, (¢, ) < M;;n, where
M, = L(I, — L|AW,|) !

> 31 8pn (4,5) o< o5y Mijn s the j*

column sum of M,:
m the total impact of e;, on all ¥;,’s

m can be regarded as the “influence power” of j

» A, 4, = 0(1) generalizes the condition sup,, ||My||1 < oo in many
spatial econometric papers.

m We allow sup; ,, >i ; 6p,n (4,7) = 00

» However, A, 4 = o(1) excludes the case that all Y; ,’s are
mainly affected by the same very few e;,’s
m Consider: Y;, = €1, Vi=1,---,n. Then Y., 6y (3,1) x n,
and thus Ap 4 o 1.



Moment Inequality

Theorem. We have

}1/ min{p,2} '

Z(Yi,n - EYi,n) < CP {Ap,min{p,2}

Lp

2

1 n n B
Ap,Z—?Z Zé,n(%]) =0(n 1)
7=1 |2=1
» As a result, H% riYin — IEY;,n)H = O(+4/n), same rate as

. . LP
the i.1.d. case.



Exponential Inequality

Theorem. Assume 7y = sup,>, Sup,>; p_”fA < oo for some v > 0.
Then V¢ > 0,

n
S (Yin — EYin)| >t | < Crexp (—cznﬁtw%) .
1=1

S|

» For SAR, recall 6,1 (¢,7) < 2||€]||ze Mijn. If

%27:1 >y Mij,n]2 < 0
then

AL/2 5
p,/z _\/n2 21 [ Gpn (8 7)) §2||6||Lp%,

1
when €; ,, is subexponentlalz v=1,ntw =nl/3

. . 1
when €;, is sub-Gaussian: v = 1, nT¥% = nl/2

. . 1
when ¢; , is uniformly bounded: v =0, n™# =n



Central Limit Theorem

Suppose that (i) liminf, % > 0 (ii)
n
supZép,n(i,j) < 00,
n,7 1=1
and (iii)
1

i=1 | j=1k=1

as n — o0o. Then

i1 (Yin — EYin)
On

Theorem. Let p > 2 be a constant and o2

= Var (1, Yin).

(6)

n n n min{2,p/2}
nnlm{g,pp}Z{ZZmin{ép,n(k,i),6p,n(k,j)}} = o(1)

4 N(0,1).




Central Limit Theorem

» j(t): the index of the jth largest value of
{0pn(%,5,Cn) 7 =1,...,n}.

» When p > 4, a sufficient condition for (7) is
opn(3,7(2)) < C{7(2)} %, V1 <i <, (8)
where a > 2 and C > 0 are some constants.

» Existing weak dependence concepts: 8; decreases as distance s
increases;

B s — oo excludes networks with small diameters;

» Ours: ; applies to networks



Motivation

Spatial Functional Dependence

Properties of Functional Dependence

A Conditional Functional Dependence

Spatial Panel Data Models

A Functional Dependence under Nonlinear Transformations
Comparison of Functional Dependence and NED

B Network Function Dependence

Conclusion

DA

it
v
N
it
v
[y

«O>r «Fr <



Conclusion

» We generalize the concept of functional dependence proposed
in Wu (2005) to spatial and network econometric settings: easy
to verify, convenient to use

» We establish a moment inequality, an exponential inequality,
LLN, and CLT

» We calculate the FDM for some models;
» spatial FDM: individuals are in R%;

» networks FDM: no metric space.



Thank You!

» Email: wuzeqi@ruc.edu.cn

» Homepage: https://zeqiwul202.github.io


https://zeqiwu1202.github.io
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