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Motivation

➤ Law of large numbers (LLN) and central limit theorems (CLT)
are indispensable for econometrics and statistics

➤ Spatial econometrics: LLN/CLT for spatially correlated data

➤ there are some LLN/CLT in the literature: linear-quadratic
form, mixing, near-epoch dependence (NED)

➤ they are not convenient enough or some strong conditions are
needed for some applications

➤ We aim to develop a weak spatial dependence concept that is
more convenient to use than above concepts, especially NED



Tools for Spatial Econometrics: Linear-Quadratic
Forms

➤ linear-quadratic forms: Kelejian and Prucha (1998, 2001); Lee
(2004, 2007); Yu et al. (2008); ....

➤ �i;n’s are independent, �n = (�1;n; � � � ; �n;n)0: �0nA�n + b0�n

➤ useful for linear models (Spatial autoregressive (SAR) model)

Yn = �WnYn +Xn� + �n ) Yn = (In � �Wn)
�1(Xn� + �n)

➤ appears in the log-likelihood function, GMM, Moran’s I test
statistics. e.g., (Yn � �WnYn �Xn�)

0Pn(Yn � �WnYn �Xn�)

➤ inconvenient for
many nonlinear estimators (quantile estimator, Huber estimator)

nonlinear spatial models (Tobit model)



Tools for Spatial Econometrics: Mixing

➤ mixing is widely used in time series and panel data

➤ however, spatial mixing (Jenish and Prucha, 2009) is not
widely used in spatial econometrics, due to:

hard to establish, as it involves supremum over two �-fields:

�(A;B) � sup
A2A;B2B

jP (A \B)� P (A)P (B)j

not preserved under infinity summations (e.g.,
Pn

j=1wijyj)

➤ Xu and Lee (2023): the mixing property of linear spatial
processes.

➤ For nonlinear processes, as far as we know, no work so far.



Tools for Spatial Econometrics: Near-Epoch
Dependence

An Example: yt = �t + ��t�1 + �2�t�2 + � � � : yt is mainly affected
by �t�s for small s, and the contribution of all �t�s (large s) is small.

Definition. fZi;n; i 2 Dn; n � 1g is generated by fvi;n; i 2 Dn; n �
1g. fZi;ng is said to be Lp-near-epoch dependent (NED) on fvi;ng
if 

Zi;n � E[Zi;njvj;n; dij � s]




Lp �  (s)! 0 as s!1:



Tools for Spatial Econometrics: Near-Epoch
Dependence

➤ (spatial) near-epoch dependence (NED): Jenish and Prucha
(2012), Xu and Lee (2015a, 2018), Qu and Lee (2015), Qu et al.
(2017), Liu et al. (2022), Xu et al. (2022, quantile regression).

➤ Its applications are wide, but
sometimes strong moment conditions are needed to preserve
NED

Limited to L2-NED, as conditional expectation might not be
easy to calculate



What’s Our Work?

➤ We aim to develop a weak spatial dependence concept that is
more convenient to use than NED

➤ We generalize the concept of functional dependence (Wu, W.B.,
2005, PNAS) to the settings of spatial econometrics:

irregular lattice in Rd, triangular arrays.

➤ We establish a set of theoretical tools for functional dependent
data:

moment inequality, exponential inequality, LLN, CLT

properties of functional dependence under various
transformations.



1 Motivation

2 Spatial Functional Dependence

3 Properties of Functional Dependence

4 Conditional Functional Dependence

5 Spatial Panel Data Models

6 Functional Dependence under Nonlinear Transformations

7 Comparison of Functional Dependence and NED

8 Network Function Dependence

9 Conclusion



Functional Dependence Measure

➤ Suppose there are some individuals (persons, cities, countries,
etc, also called spatial units, nodes), and they are located in a
lattice Dn � Rd.

➤ For a cross-sectional data with n individuals, jDnj = n.

➤ Let � =
�
�i;n; i 2 Dn; n � 1

	
be independent Rp�-valued

triangular array

Yi;n = gi;n
�
�1;n; � � � ; �n;n

�
= gi;n (�n) ; (1)



Functional Dependence Measure

Yi;n = gi;n (�n) :

➤ 8i 2 Dn, let ��i;n be an i.i.d. copy of �i;n, and ��i;n is
independent to all �j;n; j 2 Dn.

➤ 8I � Dn, define �i;n;I � ��i;n if i 2 I and �i;n;I � �i;n if i =2 I;
denote �n;I = (�i;n;I)i2Dn .

➤ Yi;n;I = gi;n
�
�n;I

�
denotes a coupled version of Yi;n on I.

Definition. Let p � 1 be a constant. 8n � 1 and I � Dn, the Lp

spatial FDM is

�p (i; I; n) �


Yi;n � Yi;n;I

Lp :



Functional Dependence Measure

The �p (i; j; n) �


Yi;n � Yi;n;I

Lp measures the influence of

f�j;n : j 2 Ig on Yi;n: if f�j;n : j 2 Ig is replaced by its i.i.d. copy
f��j;n : j 2 Ig , how much Yi;n will change under Lp-norm.

 



Functional Dependence Coefficient

Definition.
�
Yi;n; i 2 Dn; n � 1

	
is said to be Lp-functionally depen-

dent on � =
�
�i;n; i 2 Dn; n � 1

	
if and only if the Lp-functionally de-

pendent coefficient

�p(s) � sup
n

sup
i2Dn

�p

�
i;
�
j 2 Dn : dij � s

	
; n
�
! 0 as s!1: (2)



Functional Dependence Coefficient

 



Functional Dependence Coefficient

�p(s) � sup
n

sup
i2Dn

�p

�
i;
�
j 2 Dn : dij � s

	
; n
�
! 0 as s!1:

➤ lims!1�p(s) = 0: the total impacts from individuals far away can
be arbitrarily small uniformly in i and n.

➤ By Lyapunov’s inequality, if Yi;n is Lp-FD, it is also Lq-FD for all
q 2 [1; p].

➤ “monotonicity”: �p(s) � 3�p(es) for any s � es.



Example: SAR Model

0BB@
Y1;n

...
Yn;n

1CCA = Yn = F (�WnYn + �n) =

0BB@
F
�
�w1:;nYn + �1;n

�
...

F
�
�wn:;nYn + �n;n

�
1CCA ;

(3)
➤ Wn = (wij;n)n�n is non-stochastic spatial weights matrix

wi:;n: the ith row of Wn

➤ F is a Lipschitz function:
��F (e�)� F (e)

�� � L je� � ej

➤ Assume � = L j�j supn kWnk1 < 1:
Eq.(3) has a unique solution ) Yi;n = Yi;n(�n)



Example: SAR Model

Yn = F (�WnYn + �n) :

➤ Let Mn � L
�
In � L j�j jWnj

��1, where jWnj � (jwij;nj)n�n:

➤ Then

jYi;n(�(1)n )� Yi;n(�(2)n )j �
nX

j=1

Mij;nj�(1)j;n � �(2)j;nj:



Example: SAR Model

jYi;n(�(1)n )� Yi;n(�(2)n )j �
nX

j=1

Mij;nj�(1)j;n � �(2)j;nj:

➤ the Lp-FD coefficient

�p(s) �
 
2 sup

j;n
jj�j;njjp

!
sup
i;n

X
j2Dn:dij�s

Mij;n:

➤ Suppose �i;n’s are independent over i and uniformly
Lp-bounded.

1 wij;n 6= 0 only if dij < �d0:

�p (s) � C�s=
�d0 ! 0 as s!1;

2
��wij;n

�� � cd��ij for some constants c > 0 and � > d.

�p (s) � O
�
s�(��d) (log s)��d

�
! 0 as s!1:



SAR Models: Extensions

➤ In most of cases: �i;n = X 0
i;n� + ei;n. We can allow f�i;ng to be

dependent by
assuming that f�i;ng is functionally dependent on another
random field f�i;ng;
�p (s) � O(s�(��d)(log s)��d) + C ���

p

�
s=2
�
:

➤ We also calculate the FDM for
the threshold SAR models

functional-coefficient SAR models

smooth-coefficient SAR models

SAR models with stochastic weights matrices

...
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A Moment Inequality

Let Sn �
P

i2Dn
Yi;n.

Theorem. For p � 2, if the Lp-FD coefficient �p(s) = O
�
s��

�
for

some � > d
2 as s!1,

kSn � ESnkLp � C
p
n:

➤ The rate is the same as the i.i.d. case;

➤ For SAR models, when
��wij;n

�� � cd��ij , we have

�p (s) � O
�
s�(��d) (log s)��d

�
➤ If � > 1:5d, then �p(s) = O

�
s��

�



An Exponential Inequality

➤ Exponential inequality is useful in semi/nonparametric
econometrics, high-dimensional statistics, machine learning.

Theorem. Assume
�
Yi;n

	
is Lp-functionally dependent on

�
�i;n
	

with
�p(s) � O (p�)O

�
s��

�
for some � > d

2 and � � 0. Denote � = 2
1+2� .

Then 8� > 0,

P
�jSn � ESnj � n�

� � C1 exp
�
�C2n

�=2��
�
:

➤ SAR: �p(s) � (2 supj;n jj�j;njjp) supi;n
P

j2Dn:dij�sMij;n;

➤ O
�
s��

�
:
��wij;n

�� � cd��ij for some � > 1:5d;

➤ O (p�):
1 when �i;n is subexponential, � = 1, n�=2 = n1=3

2 when �i;n is sub-Gaussian, � = 1
2 , n�=2 = n1=2

3 when �i;n is uniformly bounded, � = 0, n�=2 = n



An Exponential Inequality

P
�jSn � ESnj � n�

� � C1 exp
�
�C2n

�=2��
�
:

➤ The proof is based on the moment inequality and Taylor
formula for ex

➤ Our result: n�=2 = n1=(1+2�);
rate in Xu and Lee (2018): n1=(2d+2+�)

➤ spatial FD: allow wij ≲ d��ij ;
rate in Xu and Lee (2018) requires: wij ≲ exp(�d�ij)

➤ When �i;n is uniformly bounded, � = 0.
the decaying rate with respect to n is the same as the standard
Hoeffding’s inequality



Law of Large Numbers

Theorem. If (i)
�
Yi;n

	
is uniformly Lp-bounded for some p > 1,

and (ii)
�
Yi;n

	
is L1-FD on

�
�i;n

	
, i.e., lims!1�1(s) = 0, then

1

n
(Sn � ESn)

L1! 0:



Central Limit Theorem

Theorem. Denote �2n = Var (Sn), if
(i) Yi;n is uniformly Lp-bounded for some p > 2,
(ii) lim infn!1 �2n=n > 0,
(iii) �2(s) = O

�
s��

�
for some � > d

2 as s!1,
then

Sn � ESn
�n

d! N (0; 1) :

➤ For SAR models with wij ≲ d��ij :

FD CLT requires: � > 1:5d;

the NED CLT requires: � > 2d;

➤ By the Cramér–Wold device, we can generalize the CLT to the
multivariate case.
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Conditional Spatial Functional Dependence

➤ (
;F ;P): the underlying probability space; C is a sub-�-field of F .

➤ �i;n’s conditionally independent given C.

➤ conditional on C, ��i;n is an i.i.d. copy of �i;n.

➤ For a set I � Dn, define �i;n;I � ��i;n if i 2 I, and �i;n;I � �i;n if i =2 I.

➤ Yi;n = gi;n (�n); Yi;n;I = gi;n
�
�n;I

�
is a coupled version of Yi;n on I.

Definition. For p � 1; n � 1 and I � Dn, define the conditional FDM

�Cp (i; I; n) �


Yi;n � Yi;n;I




Lp;C �

�
EjYi;n � Yi;n;I jpjC

�1=p
:

And
�
Yi;n; i 2 Dn

	
is C-Lp-functionally dependent on � =

�
�i;n; i 2 Dn

	
if and only if

�Cp(s) � sup
n�1

sup
i2Dn

�Cp
�
i;
�
j : dij � s

	
; n
�

a:s:��! 0 as s!1:
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Spatial Panel Data Model

➤ T periods, N spatial units in DN � Rd.

➤ for individual i at time t, we regard (i; t) as a point in Rd+1:
(i; t) 2 DNT �

�
(i; t) 2 Rd+1 : i 2 DN ; t = T; T � 1; : : :

	
dit;j� �



(i; t)� (j; � )



1 � max

�
max
1�k�d

jik � jkj ; jt� � j
�
:

➤ Spatial dynamic panel data (SDPD) model:

YNt = �WNYNt + 
YN;t�1 + �WNYN;t�1 +XNt� + �tlN + νN + VNt

➤ We calculate the spatial FDM conditional on (�t;νN ):
C � _1t=�1 _1N=1 �(�t;νN )



Spatial Panel Data Model

Assumptions:
1
��wij;N

�� � cd��ij for some constants c > 0 and � > d.

2 supN kWNk1 � 1 and j�j+ j
j+ j�j < 1. And � � j
j+j�j
1�j�j < 1.

3 supN;T supi;t k�itkLp;C <1 a.s. for some p � 1.
4 Conditional on C, (x0it; vit)’s are independent over i and t.

Proposition.
�
yit : (i; t) 2 DNT

	
is C-Lp-FD on f�itg with

�C
p (s) = O

�
s�(��d) (log s)��d

�
a.s. as s!1.
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Nonlinear Transformations in Spatial Econometrics

In spatial econometrics, we need to deal with a lot of nonlinear
transformations about spatial random variables:

➤ In the log-likelihood function based on normal distribution: y2

➤ censored data, binary data, quantile regression: 1(y > 0)

➤ Least absolute deviation: jyj

➤ Spatial Tobit model: �(y), ln�(y), �(y)
�(y) , ...

➤ Huber estimator: max(0; x), or min(1;max(0; x))

➤ variance estimator: y2 or yz



FDM under Nonlinear Transformations

Hi;n is a function:

Hi;n (y)�Hi;n (y
�)


 � Bi;n (y; y

�) ky � y�k

Denote Zi;n � Hi;n
�
Yi;n

�
.

Proposition. If Bi;n (y; y
�) � C < 1, then �Z;p (i; j; n) �

C�Y;p (i; j; n) and �Z;p (s) � C�Y;p (s).

➤ Examples. H(x) = �(x), H(x) = max(x; 0), H(x) = jxj,
H(x) = min(1;max(0; x))



FDM under Nonlinear Transformations

Denote Zi;n � Hi;n
�
Yi;n

�


Hi;n (y)�Hi;n (y

�)


 � Bi;n (y; y

�) ky � y�k

Proposition. Suppose Bi;n (y; y
�) � C(kyka+ ky�ka+1) for some

a � 1. The constants p; q; r � 1 satisfy p�1 = q�1 + r�1. If
�
Yi;n

	
is Lq-FD on

�
�i;n

	
and supn;i2Dn



Yi;n

Lar < 1, then �Z
p (s) �

C1�
Y
q (s).

➤ Since q > p, this prop allows us to establish FD of lower order
using FD of higher order. The order of �Z

p (s) and �Y
q (s) are

the same.

➤ Examples. H(x) = x2,
j ln�(x1)� ln�(x2)j � C(jx1j+ jx2j+ 1)jx1 � x2j



FDM under Nonlinear Transformations

Denote Zi;n � Hi;n
�
Yi;n

�


Hi;n (y)�Hi;n (y

�)


 � Bi;n (y; y

�) ky � y�k

Proposition. Suppose Bi;n (y; y
�) � C

�kyka + ky�ka + 1
�

for
some a � 1 and supn;i2Dn



Yi;n

Lq < 1 for some q satisfying
q > maxf(a+ 1)p; ap

p�1g, where p > 1. Then

�Z
p (s) � C2�

Y
p (s)(q�ap�p)=(pq�ap�p) :

➤ This proposition allows us to calculate Lp FDM of Z using Lp

FDM of Y , but the decreasing rate is slower, as q�ap�p
pq�ap�p < 1

➤ NED has a similar property



FDM under Nonlinear Transformations

Proposition. Denote Zi;n � 1
�
Yi;n > 0

�
. Suppose the probability

density functions of
�
Yi;n

	
are uniformly bounded in i and n. Then

there exists a constant C > 0 such that

�Z
p (s) � C�Y

p (s)1=(p+1) :
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Relationship between Spatial FD and NED

Definition. For some p � 1, Z =
�
Zi;n; i 2 Dn; n � 1

	
said to be

Lp-near-epoch dependent on � =
�
�i;n; i 2 Dn; n � 1

	
if


Zi;n � E

�
Zi;nj�j;n; dij � s

�



Lp
�  (s)

with lims!1  (s) = 0.

➤ NED: every spatial unit is mainly affected by the �j;n of its
close neighbors

➤ spatial FD: the impacts of the �j;n’s faraway are small

➤ The ideas of these two concepts are similar.

➤ What’s the relationship between FD and NED?



Relationship between Spatial FD and NED

Theorem. (1) When �i;n’s independent, Lp-NED coefficient � Lp-
FD coefficient:

 p (s) = sup
i;n




Zi;n � E
�
Zi;nj�j;n; dij � s

�



Lp
� �p (s) :

(2) If Yi;n =
P

j2Dn
wij;n�j;n, where wij;n’s are non-stochastic coef-

ficients and �i;n’s are independent, then

�p (s) � 2 p (s) :

➤ When �i;n’s are NOT independent, the above conclusion might
not hold.



Relationship between Spatial FD and NED

➤ Spatial FDM is more convenient to calculate than spatial NED,
especially under nonlinear transformations and p > 2.

➤ It usually requires weaker conditions to establish a CLT and an
exponential inequality by using FDM.

For CLT, it only requires � > 1:5d under FDM instead of
� > 2d under NED.

The exponential inequality under FDM enjoys both less
restrictive conditions and faster decaying rate.
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Function Dependence in Network Data

➤ 1; 2; : : : ; n are n nodes in a network;

➤ i’s might not be located in a Euclidean space Rd;
e.g., financial and social networks

➤ the order of 1; 2; : : : ; n can be arbitrary;

➤ Let � =
�
�i;n : 1 � i � n; n � 1

	
be independent Rp�-valued

triangular array

Yi;n = gi;n
�
�1;n; � � � ; �n;n

�
= gi;n (�n) : (4)



Definition

➤ Let ��j;n be an i.i.d. copy of �j;n, and ��j;n is independent to �i;n
for any i 6= j.

➤ Denote Yi;n;j as the coupled version of Yi;n with �j;n replaced
by its i.i.d. copy ��j;n, i.e.,

Yi;n;j � gi;n
�
�1;n; � � � ; �j�1;n; ��j;n; �j+1;n; � � � ; �n;n

�
:

Definition. Let p � 1 be a constant. Define the functional depen-
dence measure as

�p;n (i; j) �


Yi;n � Yi;n;j

Lp : (5)

It measures the impact of �j;n on Yi;n.



Definition

➤ Recall
�p;n (i; j) �



Yi;n � Yi;n;j

Lp :

Definition. For p � 1 and q � 1,
�
Yj;n

	
is said to be (Lp; q)-

functionally dependent on
�
�i;n

	
if

�p;q � 1

nq

nX
j=1

24 nX
i=1

�p;n (i; j)

35q = o(1):

➤ A sufficient condition is

1

n

nX
j=1

24 nX
i=1

�p;n (i; j)

35q = O(1)

for some q > 1.



Definition

➤ For SAR model, �p;n (i; j) /Mij;n, where
Mn � L(In � L j�Wnj)�1

➤
Pn

i=1 �p;n (i; j) /
Pn

i=1Mij;n is the jth column sum of Mn:

the total impact of ej;n on all Yi;n’s

can be regarded as the “influence power” of j

➤ �p;q = o(1) generalizes the condition supn kMnk1 <1 in many
spatial econometric papers.

We allow supj;n
Pn

i=1 �p;n (i; j) =1.

➤ However, �p;q = o(1) excludes the case that all Yi;n’s are
mainly affected by the same very few ej;n’s.

Consider: Yi;n = e1;n 8i = 1; � � � ; n. Then
Pn

i=1 �p;n (i; 1) / n,
and thus �p;q / 1.



Moment Inequality

Theorem. We have





 1n
nX
i=1

(Yi;n � EYi;n)








Lp

� Cp

n
�p;minfp;2g

o1=minfp;2g
:

➤ If
Pn

i=1 �p;n (i; j) <1 for some p � 2, then

�p;2 � 1

n2

nX
j=1

24 nX
i=1

�p;n (i; j)

352 = O(n�1):

➤ As a result,



 1nPn

i=1(Yi;n � EYi;n)




Lp

= O(
p
n), same rate as

the i.i.d. case.



Exponential Inequality

Theorem. Assume 
0 � supp�2 supn�1 p
��pn�1=2

p;2 <1 for some � � 0.
Then 8t > 0,
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������ � t

1CA � C1 exp
�
�C2n

1
1+2� t

2
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�
:

➤ For SAR, recall �p;n (i; j) � 2k�kLpMij;n. If
1
n

Pn
j=1

�Pn
i=1Mij;n

�2
<1,

then
�

1=2
p;2 �

q
1
n2

Pn
j=1

�Pn
i=1 �p;n (i; j)

�2 � 2k�kLp 1p
n
;

1 when �i;n is subexponential: � = 1, n
1

1+2� = n1=3

2 when �i;n is sub-Gaussian: � = 1
2 , n

1
1+2� = n1=2

3 when �i;n is uniformly bounded: � = 0, n
1

1+2� = n



Central Limit Theorem

Theorem. Let p > 2 be a constant and �2n � Var
�Pn

i=1 Yi;n
�
.

Suppose that (i) lim infn!1
�2n
n > 0 (ii)

sup
n;j

nX
i=1

�p;n(i; j) <1; (6)

and (iii)

1

nminf2;p=2g

nX
i=1

8<:
nX

j=1

nX
k=1

min
�
�p;n(k; i); �p;n(k; j)

	9=;
minf2;p=2g

= o(1)

(7)
as n!1. Then Pn

i=1(Yi;n � EYi;n)
�n

d�! N (0; 1) :



Central Limit Theorem

➤ j(i): the index of the jth largest value of
f�p;n(i; j; Cn) : j = 1; : : : ; ng.

➤ When p � 4, a sufficient condition for (7) is

�p;n(i; j(i)) � Cfj(i)g��; 81 � i � n; (8)

where � > 2 and C > 0 are some constants.

➤ Existing weak dependence concepts: �s decreases as distance s
increases;

s!1 excludes networks with small diameters;

➤ Ours: no distance; applies to networks with small diameters.



1 Motivation

2 Spatial Functional Dependence

3 Properties of Functional Dependence

4 Conditional Functional Dependence

5 Spatial Panel Data Models

6 Functional Dependence under Nonlinear Transformations

7 Comparison of Functional Dependence and NED

8 Network Function Dependence

9 Conclusion



Conclusion

➤ We generalize the concept of functional dependence proposed
in Wu (2005) to spatial and network econometric settings: easy
to verify, convenient to use

➤ We establish a moment inequality, an exponential inequality,
LLN, and CLT

➤ We calculate the FDM for some models;

➤ spatial FDM: individuals are in Rd;

➤ networks FDM: no metric space.



Thank You!

➤ Email: wuzeqi@ruc.edu.cn

➤ Homepage: https://zeqiwu1202.github.io

https://zeqiwu1202.github.io
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