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Abstract

In this paper, we generalize the concept of functional dependence from time series (Wu, 2005)
and stationary random fields (El Machkouri, Volny and Wu, 2013) to nonstationary spatial
processes. Within conventional settings in spatial econometrics, we define the concept of spatial
functional dependence measure and establish a moment inequality, an exponential inequality,
a Nagaev-type inequality, a law of large numbers, and a central limit theorem. We show that
the dependent variables generated by some common spatial econometric models, including
spatial autoregressive models, threshold spatial autoregressive models and spatial panel data
models, are functionally dependent under regular conditions. Furthermore, we investigate the
properties of functional dependence measures under various transformations, which are useful in

applications. Moreover, we compare spatial functional dependence with the spatial mixing and
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spatial near-epoch dependence proposed in Jenish and Prucha (2009, 2012), and we illustrate

its advantages.
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1. Introduction

In recent years, spatial econometric models have been widely applied to various fields of eco-
nomics, e.g., agricultural economics, international trade, climate economics, and regional and
urban economics. Accordingly, various spatial econometric models and estimation methods are
investigated in the literature. To study asymptotic theories for estimators of spatial economet-
ric models, some limiting laws and dependence concepts are indispensable. Early development of
spatial econometrics, especially linear spatial models, has relied mainly on the theories of linear-
quadratic forms of independent variables. See, Kelejian and Prucha (1998, 2001), Lee (2004, 2007),
and Yu, de Jong and Lee (2008), among many others. However, these theories are not applicable
to some recent development in spatial econometrics, e.g., the spatial panel data model with en-
dogenous spatial weights matrix (Qu, Lee and Yu, 2017), robust estimators (Liu, Xu, Lee and Mei,
2022), quantile estimators (Xu, Wang, Shin and Zheng, 2022), and nonlinear spatial econometric
models (Xu and Lee, 2015a,b). In these papers, the authors employ weak spatial dependence
concepts like spatial strong mixing or spatial near-epoch dependence (NED). Strong mixing and
NED are widely used in time series (Davidson, 1994; Doukhan, 1994) and stationary random fields
(Bolthausen, 1982; Dedecker, 1998)!, and they are generalized to spatial econometric settings by
Jenish and Prucha (2009, 2012).

However, strong mixing and NED have certain shortcomings. The strong mixing coefficient
involves the calculation of supremum over two o-fields and hence is quite complicated and incon-
venient (Doukhan and Louhichi, 1999; Wu, 2005; Xu and Lee, 2024). Moreover, even some AR(1)
processes do not satisfy the strong mixing condition (Andrews, 1984; Wu, 2005). For NED, its ap-
plication is mainly restricted to L>-NED, as LP-NED (p # 2) is usually not easy to establish; and

in some cases, some strong moment conditions are needed to preserve NED properties. Therefore,

YA random field Y : R%(or Z%) — RPY is stationary means that the joint distribution of (Y,,Ys,,...,Ys,)
does not change under the translation of (si,...,s:), i.e., the joint probability density (or mass) function
FOVey, Yay, o, Ye,) = f(Yeyir, Yegiry ., Yoy ur) for any (s1,...,s:) and r € RY( or Z9).



we aim to find a better notion of weak spatial dependence.

In Wu (2005), the concept of functional dependence (FD), also called physical dependence,
is proposed. It is often easy to verify and has many good properties. Based on this concept,
Liu, Xiao and Wu (2013) and Wu and Wu (2016) establish the Nagaev-type, Rosenthal-type, and
exponential inequalities. El Machkouri et al. (2013) generalize the functional dependence from
time series to stationary random fields located in Z¢ and study its limit theorems. Functional
dependence has been widely used in statistics to establish asymptotic theories of various statistics
(Chen, Xu and Wu, 2013; Wu, 2011; Wu and Wu, 2016; Zhou and Wu, 2009).

However, the theory of FD on stationary random fields in Z? in El Machkouri et al. (2013)
does not apply to spatial econometrics directly. The reasons for this are two-fold: (1) the spatial
units are located in Z?, which is seldom the setting in spatial econometrics; (2) the data-generating
process is supposed to be homogeneous and the spatial process is required to be stationary. On
the contrary, in spatial econometrics, the spatial units are usually unevenly spaced, and the spatial
random variables are often nonstationary and heterogeneous triangular arrays. To fill this gap,
we generalize the spatial functional dependence in El Machkouri et al. (2013). We allow (1) the
spatial units to be located in an unevenly spaced lattice, (2) the spatial process to be nonstationary,
and (3) the random variables to be a heterogeneous triangular array. Based on the spatial func-
tional dependence measure (FDM), we establish a moment inequality, an exponential inequality, a
Nagaev-type inequality, a law of large numbers (LLN), and a central limit theorem (CLT) that are
sufficiently general to accommodate more applications of interest. We want to emphasize that the
generalization from El Machkouri et al. (2013) to our paper is not trivial, because the techniques
in their proofs do not apply to our setup due to heterogeneity and nonstationarity.

Our FDM concept overcomes the shortcomings of mixing and NED. (1) It is easy to calculate
for many spatial econometric models, as it does not involve o-field or conditional expectation. For
convenience, Su, Wang and Xu (2023) apply the theory of spatial FDM developed in this paper

to study a heterogeneous spatial dynamic panel data model. (2) Compared to NED, it can be



conveniently established under LP-norm for any p > 1, and is, therefore, more flexible, especially
under nonlinear transformations. (3) Compared to those needed for NED, weaker conditions suffice
for a CLT and an exponential inequality via spatial FDM.

This paper is organized as follows. In Section 2, we present the definitions of spatial FDM
and spatial FD coeflicient. In Section 3, we investigate their theoretical properties, including some
inequalities, an LLN, a CLT, and a heteroskedasticity and autocorrelation consistent estimator
for the variance term in the CLT. In Section 4, we calculate the FDM of a nonlinear spatial
autoregressive (SAR) model, a threshold SAR model and a spatial panel data model. In Section 5,
we investigate the properties of spatial FDM and the spatial FD coefficient under various common
transformations. In Section 6, we compare spatial FDM with NED. Section 7 concludes this paper.
The proofs for the LLN and the CLT are collected in the appendices, and all other proofs are
provided in the supplementary material. All sections, lemmas and equations whose numberings
begin with “S” (e.g., Lemma S.3) are in the supplementary material.

Notation: The set of positive integers is denoted by N = {1,2,...}. For any column vector
r = (x1,20,...,29) € RY where R? is the d-dimensional Euclidean space, ||z|| = (z'z)"/? de-
notes its Euclidean norm, |z||,, = max;<r<q |2)| represents its infinity vector norm, and ||z||; =
Zizl |z | denotes its 1-norm. For any random vector X € R? its LP-norm is defined as || X||z» =

[E(]| X )]1/ P For any square matrix A = (a;;) its maximum row sum norm is defined as

nxn’
Al = maxi<i<n D iy |ai|, Ai denotes its ith row, and [A] is defined as [A] = (|ai;|),, .-
For any real number a, |a| denotes its integer part, i.e., |a] = max{b€ Z:b<a}, and [a] =
min{b€Z:b>a}. Let (Q,F,P) be a probability space. For any sub-o-field C of F, we write
Pe()=P(-|C), Ec(-) =E(-|C), and Varc () = Var (+|C). For a random vector X, let || X||, o =
[Ec (]| X7 )]1/ P Let B, 25 4 and %% denote convergence in probability, LP convergence, con-
vergence in distribution, and convergence almost surely, respectively. For any set D, |D| denotes

its cardinality. For any two nonnegative functions f(x) and g(x) defined on [0, 00), f(z) = O(g(z))

as © — oo means that there exist constants M > 0 and xo such that f(z) < Mg(z) whenever



x> x and f(x) < oo for all z € [0,00)%. For two sequences {a,} and {b,}, a, ~ b, if and only if

(iff) Timp,yoo & = 1.

2. Spatial Functional Dependence Measure and Spatial Functional

Dependence Coefficient

In this section, we define the spatial FDM and the spatial functional dependence coefficient. First,
we introduce some notation. Suppose there are some individuals (e.g., persons, cities, countries),
also called spatial units in this paper, located in a lattice D, C R?. Here, D,, can either be a
finite set whose cardinality |D,,| = n, or be a countably infinite set. We focus on two settings:
(1) for cross-sectional data with n individuals, |D,| = n; (2) for spatial panel data, each spatial
unit 4 is located in D,, C R? but we regard (i,t), the combination of spatial unit 4 and time t,
as a point in R¥™! and define D,, = D, x {...,T — 1,T} = {(i,t) : i € Dy,t < T} C RIFL.
In setting (2), |D,| = oo. For any two individuals i = (i1,...,iq) and j = (ji,...,7q) in R?
d;j = maxi<p<d |ix — ji| denotes their distance.

Let € = {€ipn,i € Dyp,n > 1} be an RP<-valued independent random field. Another random field

Y ={Yin, i€ Dy,n> 1} is generated by

Yin = gin (€n), (2.1)

!/
where {g; n, i € Dy,n > 1} is a set of RPY -valued Borel-measurable functions and €,, = ((62 n) b ) .
"/ ieDny,
In some models, e.g., a linear SAR model, the explicit functional form of g; »(-) is known. However,
in many nonlinear spatial econometric models, e.g., the SAR Tobit model in Xu and Lee (2015a),

we do not know the explicit functional form of g;,(-), but it does not affect our analysis. See

2In standard big O notation, usually it is not required that f (z) < oo, but we impose this for the convenience of
our presentation. With this definition, we can safely claim that (i) sup,. 4 g(z) 'O (g(x)) < oo for any closed set
AcC{ye0,00):g(y) >0}, (ii) 0%, O(m™?) < oo for any & > 1, and (iii) f(z) = O(z~*) for some a > 0 implies

flz) <C(x+1)" for any z € [0,00), where C' > 0 is a constant not depending on x.



Section 4.2 for more details.

©,n

/
Let (((6* )’) 5 ) be an independently and identically distributed (i.i.d.) copy of €,. For any
1€Dp
/
set I C Dy, we define €, , 1 = €, if i € I and €;,,,1 = €, if i ¢ I; we write €, 1 = <<€;nl) 5 ) .
I 7 ) ZE n

/
Furthermore, Y; ,, 1 = gin (€n,1) is called a coupled version of Y; , on [ and Y;, ; = <(Yl’n I) 5 > .
77/ i€Dy,
All our discussion in Sections 2, 3, and 5 is based on (2.1).
Throughout the paper, we maintain these conventions on notation and the following assumption

concerning the lattice D,,.
Assumption 1. For alli # j € D,, d;; > 1.

Assumption 1 employs the increasing-domain asymptotics and rules out the scenario of infilled
asymptotics (also called fixed domain asymptotics), and it is commonly used in the spatial econo-
metrics literature (Jenish and Prucha, 2009, 2012; Liu et al., 2022; Qu and Lee, 2015; Xu and Lee,
2015a,b, 2018; Xu et al., 2022). As n increases to infinity, the diameter of D,, also tends to infinity.
When we consider the geographical distance between two cities, Assumption 1 means that the cen-
ters of cities cannot be too close to each other. Although the diameter of the earth is finite, which
restricts the diameter of D,,, when we apply our theory, we expect that the sample size is large
enough such that our asymptotic theory can approximate well. In addition, the distance might
be “social-economic distance”, which means that some coordinates might be economic or social
characteristics of the spatial units. So even if the geographical distance between two individuals
is small, their social-economic distance might be large. In spatial statistics and computer science,
sometimes researchers consider infill asymptotics, e.g., when we study the image of someone’s brain,
but we do not consider infill asymptotics in this paper.

Now, we are ready to introduce our main concepts.

3See Conley and Topa (2002) and the paragraph below Assumption 1 in Qu and Lee (2015) for some discussion
about social-economic distance.



2.1. Spatial Functional Dependence Measure

Definition 2.1. Foranyp > 1,n > 1 and I C D, we define the (spatial) LP-functional dependence

measure as

Sp (&, 1) = [Yin = Yin1ll o = [gin(€n) = gin(en ) Lo -
When I = {j} is a singleton, we simplify the notation as oy (i,j,n) = dp (i, {j},n).

When I =0, 6, (i,0,n) = 0, which causes no conflict. Definition 2.1 is a generalization of those
in Wu (2005) and El Machkouri et al. (2013). The differences lie in three aspects. First, the index
sets in Wu (2005) and El Machkouri et al. (2013) are respectively Z and Z?. Instead, we consider
an unevenly spaced lattice D,, in R?, which is in line with the paradigm of spatial econometrics.
Second, Wu (2005) and El Machkouri et al. (2013) require the nonlinear transformation g to be
invariant over ¢ and n, which is ruled out by almost all spatial econometric models, but we allow
different g; ,, for different ¢ and n. Third, Wu (2005) and EI Machkouri et al. (2013) set €;,,’s to
be ii.d., but we allow the €;,’s to be non-identically distributed. Thus, {Y;,,7 € D,} might be
nonstationary and heterogeneous in our setup.

Spatial statistics usually focuses on Gaussian processes and many results are based on correla-
tion or covariance functions, and FDM is closely related to the correlation or covariance of Y; ,, and

Y;,n,[.‘1 Consider a linear process Y, =Y Ajjn€jn, where |D,| =n, A;j,’s are constant and

JjE€Dy,
€;n’s are i.i.d. with expectation zero and unit variance. For any set I C D, direct calculations
show that %52 (i,1, n)2 + Cov(Yin, Yin 1) = Var(Y;,). If we consider the case where Var(Y;,) = 1,
e, > iep, A?j,n = 1, the previous relationship becomes Corr(Y;,,Y;nr) =1 — %52 (i,1,n)%. In

addition, the FD property is also related to the covariance between two different Y;,’s and the

estimation of the asymptotic variance of n~1/2 EieDn(Yim — ]El’Ln).E’ Since FDM does not require

4We thank an anonymous referee for sharing his/her deep insight into both the relationship between FDM and
the correlation (or covariance) functions and the possible applications of FDM in studying non-Gaussian spatial
processes.

5See Corollary 6.1 and Section 3.3 for details.



€i.n’S to be normally distributed, a door is open to studying the important and challenging problem

of inference of non-Gaussian spatial processes.

2.2. Functional Dependence Coefficient

Definition 2.2 (The LP-functional dependence coefficient). For any p > 1 and s > 0, we define

the LP-functional dependence (LP-FD) coefficient, also called p-stability coefficient, as

Ap(s) =sup sup 6y (i,{j € Dy : djj > s},n). (2.2)
n €Dy

When Ap(s) = 0 as s = 0o, {Yin} is said to be LP-functionally dependent (LP-FD) or p-stable on

the independent random field {€; ,,}.

N
*€n *€n
*€5.n *€5,n
S S
[ TS > o< >
€1,n €1.n
—{; od, >
c€on cer, I={jeD,:d,; = s} “Eo.n cel
*€3.n ’ > o *€3.n ’
g1 n( N ) [ n( )
Yin Yis

Figure 1: An illustration of 6, (1,1 = {j € Dy, : d1j > s} ,n) = [|[Yin — Y101l 10

Figure 1 illustrates the definition of Ap(s). The LP-FD coefficient defined above is easy to calcu-
late and enjoys many desirable properties as shown in Sections 3-6. The 6, (¢,{j € Dy, : dij > s}, n)
in (2.2) measures the total influence of €;,’s (d;; > s) on Y;,, defined as the magnitude of the
change of Y; ,, under LP-norm if ¢;,’s are replaced by their i.i.d. copy €; s simultaneously. There-
fore, Ap(s) — 0 as s — oo implies that the total impact from individuals far away can be arbitrarily

small uniformly in both ¢ and n. Note that by Lyapunov’s inequality, if {Y; ,} is LP-FD on {€;},



it is also L9-FD on {¢;,} for all ¢ € [1,p]. Although we do not know whether A,(s) is weakly
decreasing, Ay(s) has a property similar to monotonicity: A,(s) < 3A,(3) for any s > § (Lemma
S.3).

Compared with the functional dependence concepts in Wu (2005) and El Machkouri et al.
(2013), ours is better suited for spatial econometric settings. Since {Y;,} might be nonstationary
and heterogeneous, we need to calculate the spatial FDM of every unit and take the supremum
over all spatial units, but Wu (2005) and El Machkouri et al. (2013) do not need to do so, as they
study stationary processes. In addition, our concept A,(s) employs the information of distance s,
while El Machkouri et al. (2013) define Ay(s) as Ay = 3 7;ga dp (4,7). So, our definition shares
some similarity to spatial NED.

Compared with mixing (Jenish and Prucha, 2009) and NED (Jenish and Prucha, 2012), our
functional dependence coefficient in Definition 2.2 is more convenient. The strong mixing coefficient
is challenging to calculate since it involves complicated manipulation of taking the supremum over
o-fields. Calculating spatial NED coefficient involves conditional expectation, which sometimes is
not easy. But calculating the LP-FD coefficient is quite convenient because the construction of
the coupled version Y ,,  is explicit. The advantage of functional dependence over spatial NED is
discussed in detail in Section 6.

Furthermore, we define the concept of the second-type functional dependence coefficient, which
is mainly used in our proofs, in Appendix B. Moreover, we generalize the concept of LP-FD to the
conditional LP-FD, which is particularly useful for spatial panel data models. See Appendix D for

details.

3. Properties of Spatial Functional Dependence

In this section, we establish some useful inequalities, an LLN, and a CLT for the Y; , generated by

(2.1). Throughout this section, we let T}, be a finite subset of D,,, we assume |T,| — o0 as n — o0,

10



and write S, = ZZET” YinO

3.1. Inequalities under Spatial Functional Dependence

Moment and probability inequalities are crucial for developing limit theorems. In this subsection,
we establish a moment inequality, an exponential inequality and a Nagaev-type inequality under

spatial functional dependence.

3.1.1. A moment inequality

Theorem 3.1. Under Assumption 1, if {Y;,} is LP-FD on {€;,} for some p > 2 with the LP-FD

coefficient Ay(s) = O (s7) for some k> % as s — oo, then

HSn - ESn”Lp <C |Tn’1/2 )

where C' > 0 is a constant depending neither on T, nor n.

Theorem 3.1 implies that ||>;cr (Yin —EY;JL)HLP = O(y/|Tn|) as n — oo, the same order
as the i.i.d. case. This inequality not only gives the convergence rate of the LLN but also plays
an essential role in establishing the CLT and the exponential inequality. The constant C' has an

explicit form, see the proof of this theorem and Theorem B.1 for more information.

3.1.2. An exponential inequality

Exponential inequalities play an indispensable role in high-dimensional statistics, nonparametric
and semiparametric econometrics. White and Wooldridge (1991) collect some exponential inequal-
ities for time series. Xu and Lee (2018) establish an exponential inequality for spatial NED random

fields. Wainwright (2019) focuses on the independent case for high-dimensional models.

SWhen we study a cross-sectional spatial econometric model, T,, = D,, and |D,| = n, and we do not need to
introduce T,,. However, when we study a spatial panel data model, we usually assume that the underlying data
originate from t = —oo, and thus, |D,| = co. In practice, the observable data are only a subset of all y;¢’s. Thus,
we introduce T,, C D,,, rather than use D,.

11



Theorem 3.2. Under Assumption 1, if (i) EY;,, = 0 for alln > 1, i € T,,, and (i1) {Yin} is
LP-FD on {€;n} for any real number p > 2 with the LP-FD coefficient Ap(s) < O (p¥) O (s7%) for
some K > % andv >0 as p — oo and s — oo, where O (p¥) does not depend on s and O (s™") does

not depend on p, then for any e > 0,
P (|Sal 2 [Tl €) < Cyexp (=Cy [T, /10172 20520 (3.1)

where the constants C1,Co > 0 depend neither on T;,, n nor e.

The condition A,(s) < O (p”) O (s™*) restricts the speed at which Ay(s) decreases as s — 00
and the speed at which A,(s) increases as p — oo, and requires that the effects of s and p on
A,(s) be separable. This condition can be easily satisfied for the SAR models discussed in Section
4.2. However, it is still possible that this condition is not satisfied, e.g., Ap(s) = n*/P for some
0 < 1 < 1. For such situations, one can refer to Theorem B.2 in Appendix B for a more general
condition.

Next, we compare our exponential inequality with those in the literature.

1. Compared with the exponential inequality in Xu and Lee (2018), ours enjoys some desirable
features. First, in our exponential inequality, the term \Tn|1/ (14+2Y) does not depend on d.
Second, Xu and Lee (2018) require the NED coefficient to decrease exponentially fast, while
we allow the LP-FD coefficient to decrease at the speed of a power function. Third, the
decay rate of our exponential inequality is faster than that of Xu and Lee (2018). There-
fore, all the shortcomings of the exponential inequality in Xu and Lee (2018) pointed out by

Yuan and Spindler (2022, p.4) have been overcome.

2. Yuan and Spindler (2022) also study the exponential inequality under NED. Compared with

their results, our exponential inequality does not have a remainder term.

3. Compared with the standard Bernstein’s inequality and Hoeffding’s inequality (Wainwright,

12



2019), we see that when v = 0 in (3.1), the decay rate with respect to n is the same as the

independent case; when v > 0, the decay rate is slower.

3.1.3. A Nagaev-type inequality

The condition Ay,(s) < O (p”) O (s7*) in Theorem 3.2 usually requires that Y; ,, have infinite order
of moments, which might be restrictive in some applications in spatial econometrics. In fact, if only
a finite order of moments exists, we have a Nagaev-type inequality. Nagaev (1979) establishes the
Nagaev inequality for i.i.d. random variables. Liu et al. (2013) and Wu and Wu (2016) establish
two Nagaev-type inequalities for functionally dependent time series. In this paper, we follow the
idea in Wu and Wu (2016) to establish a Nagaev-type inequality for functionally dependent spatial
variables. To begin with, we generalize the dependence-adjusted norm (DAN) concept given in
Wu and Wu (2016), which plays the role of LP-norm in the traditional Nagaev inequality (Lemma
S.11). For any w > 0, we define the DAN as

1Yl =sup (s +1)% Ap(s) < oo.
s>0

Theorem 3.3. We assume EY;,, = 0 for all i € T,,. If [|Y.||,,, < oo for some w > d and p > 2.

Then, for all x > 0 and k > 1 satisfying xk > ﬁ,

CiIY.|P T, Ol
1 p,wrner,andeXp( 2 )

P(|S,| > 21) < -
P 1Y-[]5,, [Tl

where C1,Co,Cs > 0 are constants depending neither on x, n nor T,.

3.2. Limit Theorems under Spatial Functional Dependence

Now, we establish an LLN and a CLT under spatial functional dependence, which are vital to
establishing large sample properties of various estimators and test statistics in econometrics and

statistics.

13



3.2.1. The law of large numbers

Theorem 3.4. Under Assumption 1, if (i) ||Y| 1» = sup, sup;ep, [|Yinll, < oo for some p > 1,

and (i) {Yin} is L*-FD on {€;n}, i.e., lims_oo A1(s) = 0, then
T, "1 (S, — ES,) & 0.

We note that the moment inequality (Theorem 3.1) also implies an LLN. Theorem 3.1 requires
some conditions on LP-spatial FD coefficient (p > 2); however, Theorem 3.4 only imposes conditions
on L'-FD coefficient for the LLN, and it only requires that lim, .., A1(s) = 0 without any specific

decreasing rate.

3.2.2. The central limit theorem

Theorem 3.5. When py = 1, under Assumption 1, if (i) sup, sup;ep, ||Yinll;, < 0o for some
p>2, (ii) B=liminf, o [T, 02 > 0, where 02 = Var (S,,), and (iii) the L>-FD coefficient of

{Yin} on {€n} satisfies Aa(s) = O (s7%) as s — 0o for some & > &, then

wg‘]\](ojl)_

On

Conditions (i)-(ii) in Theorem 3.5 are standard in establishing CLTs (see Jenish and Prucha,
2012, etc.). Condition (iii) requires that the dependence among Y;,’s cannot be too strong.

The NED CLT in Jenish and Prucha (2012) requires that the L2-NED coefficient 9/(s) satisfies
Yoy ma~1y(m) < oo. Our spatial functional dependence CLT requires only that the L?-FD
coefficient As(s) decreases faster than s~%2, which is less restrictive.

By the Cramér-Wold device, we can generalize Theorem 3.5 to the multivariate case:

Corollary 3.1. We write ¥,, = Var (S,,) and Amin(Xr) is the minimum eigenvalue of ¥,,. When

py > 1, under Assumption 1, if (i) sup,sup;cp ||Yinll;, < oo for some p > 2, (ii) B =

14



Hminf, oo [Th| ™! Amin(Zn) > 0, and (iii) the L*-FD coefficient of {Yin} on {€;,} satisfies No(s) =

O (s7") for some k > %, then
S (8, —ES,) 5 N(0,1,,) .

3.3. Heteroskedasticity and Autocorrelation Consistent Estimator

For inference, we propose a heteroskedasticity and autocorrelation consistent (HAC) estimator for
the variance term V,, = Var(|T,,|%/2S,) = |T,| ', in the CLT (Corollary 3.1). The idea is
borrowed from Kojevnikov, Marmer and Song (2021). We assume EY;,, = 0 for all ¢ € T},. Then,

the variance of |T;,|~1/2S,, is

Vo = Var(IT,| 71/28,) = > wn(s), (3:2)
s>0
where Un(S) = ’Tn‘_l ZiGTn ZjETn:dijG[s,s—i-l) E(Yz,nygl,n)
As in the time series literature, we employ a kernel function k(-) : R — [—1,1] to assign
weights to the auto-covariance terms vy, (s) so that we can estimate V;, consistently. Let b, be the

bandwidth. Then, the HAC estimator of V, is given by
Vo= kn(s)tn(s), (3.3)

where k,(s) = k(s/b,) and v,(s) = ]Tn|—1 ZieTn ZjeTn:dije[s,sH) YmY]’n
Next, we establish the consistency of the HAC estimator by imposing certain assumptions on

the moment and weak dependence of {Y;,}, the bandwidth b,,, and the kernel function k(-).

Theorem 3.6. Let 2 < py < qo € R satisfy p% + q% = % We suppose EY; , = 0 for all i € T,,.
If (i) IY|lpoo = sup;p, [|YinllLwo < oo, (ii) the kernel function k(-) satisfies k(0) = 1, k(u) = 0

when |u| > 1, k(u) = k(—u) for all u € R, and |k(u) — 1| < Cilul** for some constants
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Ck,cr > 0, (iii) {Yin} is L*-FD on an independent random field {€; ,} with the L*-FD coefficient

satisfying Aq(s) = Cas™ A, where the constants Ca > 0 and ca > max {ck +d+1, (QZg:g)d}, (iv)

1

by = Cy|Ty|® for some constants Cy, > 0 and ¢, € (0, 55), then as n — oo,

Vi — Vi = 0p(1).
Remark 3.1. We note that 2 < py < ¢qg and pio + q% = % imply gop > 8. Condition (ii) is satisfied by
most common kernel functions with compact supports, such as k(u) = 1(|u| < 1). Condition (iii)

requires the L?-FD coefficient of {Y;,,} to decrease sufficiently fast. Condition (iv) assumes that

the bandwidth b, increases as a power function of |T5,].

4. Examples of Spatial Stable Processes

In this section, we provide some primitive conditions to calculate the spatial FDM and the LP-FD
coefficient of {Y; ,,} generated by an SAR model, a threshold SAR model, and a spatial panel data
model. We also show how FD is employed to establish asymptotic distributions of estimators of

the SAR Tobit model and a dynamic network quantile regression model.

4.1. A General Criterion

First, we provide a general criterion to establish the LP-FD property. Let X = {X; ,i € Dy, n >
/
1} be an RPX-valued triangular array random field and denote X,, = <<Xz’ n) b ) . Suppose
"/ ieDy

{Yin,i € Dy,n > 1} is generated by’

Y:i,n = hi,n (Xn> ) (41>

"When X, ,’s are independent, representation (4.1) is identical to (2.1). However, representation (4.1) allows
X;.n’s to be dependent, more specifically, allows {X;» = X; »(un)} to be generated by an independent random field
{uin}. In this case, hin(Xn(:)) can be regarded as ¢; » () in (2.1).
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where h;,, : (RPX)" — RPY satisfies the following condition: for all z,z® € (RPX)",

R () = hin (2°)] < Z mijn ||z — 25|, (4.2)
jeDn

where z; is the jth component of x. Denote ¢ (s) = sup,, ;ep, ZjeDnldijZS Mijn-

Proposition 4.1. If (i) lim o ¢ (s) = 0, (1) X; s are independent, and (iii) || X || 1, = sup,, iep,, [ Xinll» <
oo for some p > 1, then (i) for all i,j € Dy, 6,(i,j,n) < 2| X||;p Mijm, and (i) {Yin} is LP-FD

on {X; n} with the LP-FD coefficient A, (s) satisfying Ap (s) < 2| X||;» ¢ (s) for all s € [0, 00).

When X; ,’s are dependent, we assume they are generated by another latent independent ran-
dom field {u;,, : i € Dy,n > 1}, and the LP-FD property of {Y;,} is more complicated than that

in Proposition 4.1. The result is presented in Proposition 4.2.

Proposition 4.2. If (i) lims o ¢ (s) = 0 and ¢ (0) = sup,, ;ep, D_jep, Mijn < 00, (ii) for some
p > 1, {Xin} is LP-FD on an independent random field {u;,} with the FDM 6x ,(i,1,n) and
the LP-FD coefficient Ax ,, (s) satisfying lims_oo Axp (s) = 0 and Ax,(0) < oo, then (i) for all
i,k € Dy, the FDM of {Yin} on {u;n} satisfies 6y (i,k,n) <3 5cp Mijndxp(d, k,n), and (i) the
LP-FD coefficient Ay, (s) satisfies Ay (s) < 3Ax,(0)¢ (5) + 3¢ (0) Ax (s —5) for all s € [0,00)
and 5 € [0, s]. In particular, A, (s) < 3Ax,(0)¢ (5) +36(0)Ax,p (5).

We note that the conditions on m;;, for LP-FD and L2-NED (Proposition 1 in Jenish and Prucha,
2012) are almost identical. However, here the p > 1 can be an arbitrary number; Proposition 1 in
Jenish and Prucha (2012) is applicable only to p = 2. With more choices for p, FD is more flexible

and more convenient than NED in applications.

4.2. Spatial Autoregressive Models

In this subsection, we calculate the FDM and the LP-FD coefficient for the SAR models. The
individuals 1,2, ..., n are located in some lattice D,, C R satisfying Assumption 1, and we identify

each individual with its location in R? for simplicity.
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4.2.1. SAR model

The SAR model can be written as

Yl,n F ()\W1~,nYn + Xi,nB + 617n)

Yon F (AWonYn + X, .8+ €nn)

where W,, = (wijvn)nxn is a nonstochastic and nonzero spatial weights matrix, W;., is the ith
row of Wy, F' : R — R is a Borel-measurable function, F(a) = (F(a1),...,F(a,)) for any col-
umn vector a = (ai,...,a,) € R", A\ € R and 8 € RE are true model parameters, X, =
(X1 Xom, ... ,Xn’n)/ € R™*K is the exogenous variable matrix, and €, = (€15 €2, - - - ,enyn)/ €
R™ is the disturbance term. The SAR model and its variants have been widely used in applications.
When F (z) = z, (4.3) becomes Y,, = A\W,,Y,,+ X, f+¢€,, which is the standard (linear) SAR model;
when F'(z) = max (0, ), (4.3) becomes the SAR Tobit model studied in Xu and Lee (2015a).

We employ Propositions 4.1 and 4.2 to show that the {Y;,} generated by (4.3) is FD under
some weak conditions. To do so, we need to impose some assumptions on the function F', the

spatial weights matrix Wy,, {X; »}, and {€;n}.

Assumption 2. F' is a Lipschitz function with the Lipschitz constant L > 0, i.e., for any e, e® € R,
|F (e*) — F(e)] < Lle®* —e|. And ¢ = L|A|sup,, |[Wall,, < 1.

Assumption 2 is a generalization of Assumption 2 in Xu and Lee (2015a) and Assumption 3
in Xu and Lee (2015b). It ensures the existence and uniqueness of the solution of (4.3). See

Xu and Lee (2015a) for more discussion about it.
Assumption 3. The weights w;;y,’s in Wy, satisfy one of the following conditions:

(1) Only individuals whose distances are less than some specific constant dy > 1 may affect each

other directly, i.e., w;j, can be nonzero only if d;j < do;
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(2) Jwijn| < cdl-_j" for some constants ¢ > 0 and o > d.

Assumption 3 is intuitive. From our definition, FD property implies that when the distance d;;
is large, €;, has a negligible impact on Y} ,,. In the SAR model, w;; , represents the direct impact
of Y}, on Y;,. Thus, intuitively, for an FD SAR process, |w;jj | should decrease as d;; increases.
Assumption 3(1) implies that there is a threshold distance dgy such that when dij > do, Wijn Will
be zero. Assumption 3(2) allows w;;, to decrease as a power function of the distance d;;. In fact,
we relax Assumption 3(2) in Xu and Lee (2015a) which requires the number of spatial units with
strong impacts to be uniformly bounded. And if we impose a faster decreasing rate on w;j,, e.g.,

|wijn| < cexp (—ad;;), we can obtain a stronger conclusion.
Assumption 4. One of the following conditions is satisfied:
(1) (X; ., €in)’s are independent over i;

!/
(2) for some p > 1, {(X{m,em) 21 € Dpyn > 1} is LP-FD on an independent random field

7

u = {Uin : @ € Dp,n > 1} with the spatial FDM dx¢p(i,1,n) and the LP-FD coefficient

Axep (8) satisfying lims oo Axep (s) =0 and Axep (0) < oo.

Assumption 4 considers two cases: (1) (Xz{,rw €in)’s are independent, and (2) they are spatially
dependent. In both cases, we do not require that X;,, and ¢;, be independent. So, conditional
heteroskedasticity is allowed. When (Xl-’7n,e,~7n)’s are spatially dependent, we suppose that they
are generated by some independent underlying random vectors w;,’s. Similar ideas are widely
employed. For example, in time series, we usually model a dependent process as a moving average
process. Since Assumption 4(2) allows €;,’s to be dependent, the SAR model with an SAR dis-
turbance (called the SARAR model) is a special case of (4.3), and we discuss it in Section 4.2.2.
Moreover, Assumption 4(2) allows contextual effects. If {X;,} is LP-FD on some independent

random field {u; .}, by Proposition 4.2, {W;. , X} is also LP-FD on {u;,} under some reasonable

conditions. Thus, Assumption 4(2) allows {W;. ,X,,} as a special term.
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We recall that L is the Lipschitz constant of F(-). To present our main results, denote

Mn = (mij,n)nxn =L (In - L |)\‘ ‘Wn‘)_l )

where |W,,| = (|wijn|)nxn. Under Assumption 2, M, is well-defined and Neumann’s expansion is

allowed.

Proposition 4.3. We assume Cycp = sup,,;

X;’nIB + Ei,n
in Assumption 4. Let 0,(i,j,n) and A, (s) denote the FDM and the LP-FD coefficient of {Y;n},

; < 00, where p is the same as that
¥

respectively.
(1) Under Assumption 2, {Y;} is uniformly LP-bounded.

(2) (i) Under Assumptions 2 and 4(1), 6,(i,7,n) < 2Cpc pmyjpn for all i,j € Dy,

(it) Under Assumptions 2 and 4(2), 6 (i,k,n) < 320 1 (Bl + D)mijndxep(d, k,n) for all
i,k e D,.

)

!/
(3) Under Assumptions 1, 2, 3(1), and 4(1), {Yin} is LP-FD on {(X(,nﬁi,n> } and A, (s) <

2Ce pd(s) for all s € [0,00), where ¢ (s) < TECCS/JO and ( is defined in Assumption 2.

/
(4) Under Assumptions 1, 2, 3(2), and 4(1), {Yin} is LP-FD on {(X{yn,ei,n> } and A, (s) <

20, pd (s) for all s € [0,00), where ¢ (s) = O <s_(a_d) (log s)aid> does not depend on p.
(5) Under Assumptions 1, 2, 3(1), and 4(2), {Yin} is LP-FD on {u;y} and

S

Ap(s) <381+ 1) Axep(0)6 (2) +3 (181 +1) ¢(0) Axey (5)

for all s € [0,00), where ¢ (s) = I%CCS/JO. In particular, as s — 0o,

(1) if Axep(s) = O (s7) for some a1 > 0, then A, (s) = O (s™);

)

(11) if Axep (s) = O (n®) for some 0 < n <1, then Ay, (s) = O (§°), where § = max (771/2’(1/(2%))
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(6) Under Assumptions 1, 2, 3(2), and 4(2), {Yin} is LP-FD on the random field {u;} and

S

Ap(s) < 3(I18] +1) Axepl(0)9 (5

) +30181+1)6(0) Axey ()

for all s € [0,00), where ¢ (s) = O (s_(a_d) (log S)O‘fd> does not depend on p. In particular,
as s — 00, if Axep(s) =0 (S_(O‘_d) (log S)O‘_d>, then Ay (s) = O (S_(O‘_d) (log s)a_d>.

From Proposition 4.3, under certain conditions, the {Y; ,} generated by the SAR model is LP-
FD. In Section 5.2, we apply Proposition 4.3 to show that the score function of the SAR Tobit
model studied in Xu and Lee (2015a) satisfies a CLT, and this is a critical step in establishing the

asymptotic distribution of their estimator.

4.2.2. SARAR model

The SARAR model is a generalization of the SAR model and is widely used in applications. Thus,
we explore its functional dependence properties. The form of the SARAR model is the same as
(4.3), but €, = pMpe, + vy, where v, = (Vin,...,Vnn), vin's are i.i.d. random variables, and
M, = (Mijn),y, i a nonstochastic and nonzero spatial weights matrix. As mentioned previously,
the SARAR model is just a special case of the previous SAR model in our setting. Thus, we can
employ Proposition 4.3 to establish the LP-FD property of the SARAR model by imposing some

conditions on M, to ensure that {¢;,} is LP-FD on {v;,,}.
Assumption 5. (1) The Lipschitz constant of F : R — R is L, and ( = L |A|sup,, [|[Wh|,, <1,
(2) Jwijn| < cdl-_j" and |mjjn| < cdi_ja for some constants ¢ > 0 and o > d;

(3) for some p > 1, {X;,} is LP-FD on an independent random field {u;y :i € Dy,n > 1}
with the LP-FD coefficient Ax , (s) = O (s_(o‘_d) (log S)aid> satisfying Ax p (0) < oo; and
(u;m, Ui,n) 's are independent over i;

(4) supy, [[pMy o < 1;
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Xinf

(5) l[olly = suppi Vil o < 00, [|X]|Lp = supp,;

‘ < 0.
Lp

Assumption 5 inherits the assumptions of Proposition 4.3(6) directly. Consequently, the LP-FD

coefficient of {Y; ,} is a direct result of Proposition 4.3(6).

/
Proposition 4.4. Under Assumptions 1 and 5, {Y;,} is LP-FD on {(u;n, UM) } with the LP-FD

coefficient Ay (s) = O (s*(o‘*d) (log s)o‘_d> as s — o0.

4.2.3. SARMA model

The SAR model with moving average disturbances (SARMA model) is another generalization of
SAR model (Dogan and Tagplnar, 2013; Fingleton, 2008; Huang, 1984). The form of the SARMA
model is the same as (4.3), except that €, = v, — pMyv,, where v, = (Vi p,...,Unn), Vin's

are i.i.d. random variables, and M, = (mj;n) is a nonstochastic and nonzero spatial weights

nxn

matrix. Here are the assumptions needed to establish the FD properties of the SARMA model.
Assumption 6. (1) The Lipschitz constant of F: R — R is L, and ( = L |A|sup,, [|[Wh|,, < 1;
(2) |wijn| < cdi;® and [mijn| < cdi* for some constants ¢ > 0 and a > d;

(3) for some p > 1, {X;,} is LP-FD on an independent random field {u;, : i € Dyp,n > 1} with
the LP-FD coefficient Ax p (s) satisfying Axp (s) = O (s_(o‘_d) (log s)a_d> as s — 0o and

Axp(0) < oo; and (u;n,vm> ’s are independent over i;

< Q.

(4) Illgo = supp,i [vinllpp < 00 and [|X]| 1 = supy, ;| XinB]|

,n

Like the SARAR model, Assumption 6 also inherits the assumptions of Proposition 4.3(6).

Thus the LP-FD coefficient of {Y;,} is a direct result of Proposition 4.3(6).

/
Proposition 4.5. Under Assumptions 1 and 6, {Y;,} is LP-FD on {(ugyn, vim) } with the LP-FD

coefficient Ay (s) = O (3*(0‘*‘” (log s)a_d> as s — 00.
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4.3. A Threshold Spatial Autoregressive Model

A threshold spatial autoregressive (TSAR) model, which combines a threshold model and an SAR
model, has received increasing attention recently. Deng (2018) considers a TSAR model and pro-
poses a two-stage least squares estimator for the model. Li (2022) studies the quasi-maximum
likelihood estimation of a TSAR model. Here, we explore the functional dependence properties of

the TSAR model in Li (2022), which can be written as
Yo = (MDy + X2Dy) Wy Yy, + Dy X, 81 + Dy X B2 + €n, (4.4)

where Y, = (Yin, ..., Yon), Dy =diag{1(qi,n <7),..., Lgnn <)}, Dv =I,—Dy, A, 2,yER
and B1, B2 € RE are true model parameters, X,, = (X1, Xon, .., Xnn) € R™E are exoge-
nous variables, ¢;,’s are the exogenous threshold variables which might be part of x;,, €, =
(€1.ms €2, - - .,en,n)/ € R™ is the disturbance term, and W, = (wij,n)nxn is a nonstochastic and

nonzero spatial weights matrix. We first state some assumptions.
Assumption 7. (1) Asup,, [|[W,]||, <1, where A = max {|\1],|A2]};
(2) |wijn| < ed;;* for some constants ¢ > 0 and o > d;

!/
(3) qin’s are independent across i; for some p > 1, {(Xz{,n’ ei,n) 21 € Dpyn > 1} 1s LP-FD on
an independent random field w = {u;y, : i € Dyp,n > 1} with the spatial FDM x. (3,1, n)
and the LP-FD coefficient Axep (s) satisfying Axep(s) = O (s*(a*d) (log S)O‘_d> as § — 0o

and Axep (0) < 0o;

(4) llellzr = supy; ll€inll o < 00 and || X|| Ly = supy,; [ Xinll L < oo

Proposition 4.6. Under Assumptions 1 and 7, the {Y;,} generated by the model (4.4) is LP-FD
/
on {(u;n, Qi,n) } with the LP-FD coefficient A, (s) = O (s*(a*d) (log s)o‘_d) as s — 0.
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4.4. Spatial Panel Data Models

In this section, we discuss the functional dependence of spatial panel data models. We suppose that
in the panel data, there are N individuals named as 1,..., N and they are located in Dy C R¢,
and the time periods originate from —oo: t = ..., —1,0,1,...,T. We regard each individual ¢
at time ¢ as a point in the (d + 1)-dimensional spatial-temporal space R*!: (i,t) € Dy =

{(i,t) eRH e Dy, t=T,T—1,.. } We adopt the same metric as in Qu et al. (2017):

ditjr = [|(4,8) — (4,7)|| o = max {dsj, [t — 7|} = max{lrgggd|ik — Jk| .|t — T|} .

We still consider the setting in Assumption 1, i.e., d;; > 1 for any i # j. Consequently, for any
different pair (,t), (j,7) € D1, dit;jr > 1.

We suppose that the fixed effects in the spatial panel data model are random, which includes
nonstochastic fixed effects as a special case. So, we employ the concept of conditional spatial FDM
here.® Let (2, F,P) be the underlying probability space and C be a sub-o-field of F. We suppose
ei’s ((i,t) € Dyr) are conditionally independent on C, and we write eny = (€], €hy,- - -, €hy) -
We suppose yit’s ((i,t) € Dnr) are generated by ent’s: yir = it (ENt,ENt—1,...). We write

Yt = (y1t, - - -, yne) and Gy = (gut, - - ., gne)'. We can also write the system as

g1t (ENtENt—15--+)

Yni = =Gyt (ENt75N,t—17~-->- (45)

9Nt (5Nt, ENg—15-- )

For all (i,t) € Dy, given C, let €, be an i.i.d. copy of €, and €, is independent of €;, for all

(4,7) € Dnr. For any set I C Dy, we define €, 1 = €}, if (i,t) € I and €;,1 = €;; otherwise, and
/

ENtI = (6/11&,176/21:,1’ .. .,e§Vt71) . Then yit.1 = git (ENt.1,ENt—1.1,---) is a coupled version of y;; on

I and Yni1 = (yie1, - - - ,yNt’I)'. Although the notation for spatial panel data is slightly different

8See Appendix D for details about the conditional spatial functional dependence.
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from that in Section 2, e.g., Dy7 here corresponds to D, in Section 2, the setting in the spatial
panel data is a special case of the general setting in Section 2. For clarity, we restate Definitions

2.1 and 2.2 in the spatial panel data setting.

Definition 4.1 (The FDM for spatial panel data). For p > 1, (i,t) € Dyr and I C Dy, define
the conditional functional dependence measure as 55 (it, 1) = lyit — yit, 1|l o o- When I = {(j,7)}

is a singleton, we simplify the notation as (55 (it,{(4,7)}) = 55 (it, 7).

Definition 4.2 (The LP-FD coefficient for spatial panel data). Letp > 1. For the system in (4.5),
{yit} is said to be C-conditionally LP-functionally dependent (LP-FD) or C-conditionally p-stable

on {e€;} if the C-conditional LP-functional dependence (LP-FD) coefficient satisfies

Ag(s) =sup sup 55 (it,{(4,7) € Dnr : dit;jr > s}) =0 as s — oo, (4.6)
N,T (it)eDn1

4.4.1. A general SDPD model

Next, we study the functional dependence properties of the spatial dynamic panel data (SDPD)
model, which has been widely investigated in the literature. See, e.g., Yu et al. (2008) and
Lee and Yu (2010), among many others. The SDPD model is specified as

Yne = A\WnNYNe + YY1 + pWNYN -1 + X B+ uly +vn + Vi, (4.7)

wheret = T,T—1,...,i=1,....,N,Yn: = (yie, Y2t - - .- ynt), Wy = (wij,N) v+ v 18 @ nonstochastic
spatial weights matrix and invariant as ¢ changes, Xyt = (z1¢,...,2n¢) € RYV*P is the regressor
matrix, py is the time fixed effect at period t, Iy = (1,...,1)" is N-dimensional, vy = (v1,...,vN)"
is an N x 1 column vector of individual fixed effects, Vi = (v1¢, . . ., th)/ is the disturbance term,

and \,v, p, 8 € R are true model parameters. Denote Sy = Iy — AWy, Ay = S;,l (vIn + pWn),

ent = XniB + wely + vy + Ve and eny = (ers, ..., ent). Then (4.7) can be written as Yy =
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ANYN -1 + S;,ls ~t- Under some suitable conditions, by iterating the above equation, we have

YNt = Z A}]L\TS;[%:N,tfh‘ (4.8)
h=0

For this example, we define C = V§2_ _ VY_; o(us, Vn) as the sub-o-field generated by all fixed
effects. To obtain the conditional ILP-FD coefficient for the SDPD model, the following assumptions

are needed.
Assumption 8. |w;;n| < cd;* for some constants ¢ > 0 and a > d.

Assumption 9. supy |[Wn||,, <1 and [A|+ |y]+ |p| < 1. Denote ( = |¥|_+‘|)\p|| <1.

Assumption 10. |e||;, » = supy psup;; [|€itllpp o < 00 a.s. for some p > 1.
Assumption 11. Conditional on C, (x},,vi)’s are independent over i and t.

These assumptions are like those for the SAR model, but all the statements here are conditional

on C.

Proposition 4.7. For model (}.7), under Assumptions 1 and 8-11, (1) {yi : (i,t) € Dy7} is C-
conditionally LP-FD on {€;} with the C-conditional LP-FD coefficient AS (s) = lell o c O <s*(°‘*d) (log s)o‘_d)

almost surely as s — oo; (2) the same conclusion also holds for {W;. nYn¢ : (i,t) € Dnr}.

Remark 4.1. In Proposition 4.7, we require x;’s and v;’s to be conditionally independent on
C. In Section S.8.4 in the online supplement, we provide an example where v;;’s are correlated.
Our conclusion can also be generalized to allow x;’s to be correlated in both the spatial and time
dimension. For instance, we consider X ; = Zi’;o DTX N,t—7, Where the p, X 1 random vectors Z;;’s
(the transpose of the ith row of X nt) are identically distributed and conditionally independent on
C over ¢ and t, D, is an N x N nonstochastic matrix whose row-sum-norm decreases exponentially

as T — 00, i.e., ||D;||,, < Coexp(—Ci7) for some constants Cp, C; > 0 and sup; Zj:dij>s(D7')ij =
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0 (s_(o‘_d) (log s)aid> for any 7 > 0, where (D;);; is the (7, j)th entry of D-. Then

0o 00 00 00 k
> ARSI XnnB =) ANSY (Z DTXN,t_h_T> B=Y" <Z A@TSN1D7> XniiB.
h=0 =0 k=0 \7=0

h=0

decreases exponentially
[e.e]

From the proof of Lemma A.8 in Su et al. (2023), Zi:o AkTTS D,

as k — oo. This fact can be used to replace the fact that HA?\,Sﬁl HOO decreases exponentially as
h — oo in the proof of Proposition 4.7. Further, by (1) replacing t; —t2 > s and 0 <t; —ty < s in
the last inequality of (5.37) by t1 —t2 > § and 0 < ¢; — t3 < § respectively, where § depends on s
and § < s, and (2) selecting § appropriately, we can show that {y;; : (i,t) € Dy} is C-conditionally
LP-FD on {(&;,vy)'} with the C-conditional LP-FD coefficient AS (s) = O (s_(a_d) (log s)a_dﬂ)
a.s. as § — 0.

Remark 4.2. We can allow the slope coefficients of different individuals to be different, as long as

their upper bounds satisfy Assumption 9. For example, we denote the spatial coefficient for the

ith row of WYy by Ai; A = supyensup;—; .y |Ai|, and Ay = diag{\1,..., Ay }. Then

A A .
AWy = Mdiag {; o iv} Wy = AWy
where Wy = diag {%, ceey ATN} Wy can be regarded as the new spatial weights matrix. Then

Proposition 4.7 remains applicable.

4.4.2. A DNQR model

Next, we give an example to illustrate how functional dependence is used to derive a CLT, which is

an important step in deriving the asymptotic distribution of the estimator for the dynamic network
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quantile regression (DNQR) model in Xu et al. (2022). Their model can be specified as’
Yt = e WNYne + 72 WN YN -1+ V23YN -1 +Y0rln + Zniar + INBLFy + Vive, (4.9)

wheret =T, T—1,...,i=1,...,N,Yn: = (yit, Y2t - - ., ynt), W = (wij,N) sy 18 @ nonstochastic
time-invariant spatial weights matrix, Zny; = (z1,...,2n¢) € RYXP= is the exogenous regressor
matrix, 7o, is the intercept term, Iy = (1,..., 1) is N-dimensional, f; = (fi1,..., fin) € R™lisa
vector of time-varying common factors and F; = (f{, - ft’_k)/ e Rk+Dmx1 y7, — (v, ... one)
is the disturbance term and v;’s are independent, and or, v1+, Vv2r, 3+ € R, ar € RP2, and B, =

(Bors---:Brr) € REHDMXL gr6 true model parameters. We write z;; = (1,24, Yie—1,Yie—1, FY)
and ¢r = (Yor, &, Vr2, 73, B.)', where Yii-1 = Wi nYni—1. We take the instrumental variable
as i = (esWEYN -1, el W3 Yn—1) € R?, where ¢; € R¥ is a column vector with unity on the ith
entry and zeros otherwise. We write ¥;; = (a,, T;t)/, Uit = Yit—Y17Y it — T dr and sip = ¥y (wir) - Wi,
where Y = W, nYnt and 9-(-) = 7 — 1(- < 0). In Xu et al. (2022), they explore the asymptotic
theory for the instrumental variable quantile regression (IVQR) estimator by establishing the NED
property of {y;;}. Here, we establish the CLT for {s;;}, a crucial step in establishing the asymptotic

normality of the IVQR estimator by using FD.
Assumption 12. Let C = V2 _ o(2, ... 2N, FY).
(1) supy |Wn|loo =1 and |yi7| + |v2r| + |73+ < 1. We write = berltier] g

1_|’Yl‘r|

(2) 1ol = supy e il oc < 00 as. for some p > 2; [or| +$upy e |y0rr] < ds < 007

and || Bz supy || Fill, < df < oo.
(3) |wijn| < ed;* for some constants ¢ > 0 and o > 3d+ 3.
(4) Conditional on C, vy’s are independent over i and t.

(5) Q=7(1 = 7)limy 700 (NT) ™! Zfil ZZ;I E (¥;; ¥, | C) is nonsingular a.s.

9Here, we use a slightly different form, but it is equivalent to the one in Xu et al. (2022).
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(6) P(vie <0 |Cyxip,rit) =T a.s.

Assumptions 12(1)-(4) directly inherit Assumptions 8-11. Similar assumptions as those in
Assumption 12 are also employed in Assumptions 2.1 and 3.2 and Theorem 3 in Xu et al. (2022).
Xu et al. (2022) require o > 2d + 1 in Assumption 12(3) to establish NED, so our assumption is

less restrictive. Then we have the following CLT.

Proposition 4.8. For model (4.9), let Gnr = Z?:l Zf\il sit. Under Assumptions 1 and 12,

~E
q-12Gnr — EcGnr N;GNT 4 N(0,1).

To conduct inference, one must estimate 2 consistently. A natural estimator is

A 7(1_7) Y& !
Q=—""7") ) Ualy,

i=1 t=1

and it is a consistent estimator for 2 by the conditional LLN under functional dependence (Theorem

D.1).
Proposition 4.9. For model (4.9), under Assumptions 1 and 12, Q5.

Remark. Though the spatial weights matrices (W), or W) considered in this section are nonstochas-
tic, our theory can also accommodate stochastic matrices. In Section 5.8 in the online supplement,
we discuss the spatial FD properties of more examples, including the models with a stochastic (or
even possibly endogenous) spatial weights matrix. All the examples in this section and Section
S.8 share a similar structure: the right hand sides of these data generating processes (e.g., (4.3),
(4.4), and (4.7)) are all Lipschitz functions of the spatial interaction term (W,,Y,, or WxYn;) and
the right-hand-side function is a contraction mapping of Y;, or Yy, which is preserved under our
assumptions (e.g., Assumption 2). The Lipschitz and contraction mapping properties are vital for
condition (4.2) to hold such that the general criteria (Propositions 4.1 and 4.2) are applicable to

establish the spatial FD property. When the Lipschitz and contraction mapping properties do not
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hold, e.g., the right hand side is an indicator function (when Y;,, is discrete), the general criteria
are not applicable and we have to resort to other methods to establish the spatial FD property of
Y;n. Finally, the establishment of the FD property does not require the coefficients in the models
to be homogeneous (i.e., identical for all individuals). We allow for individual heterogeneity in
the models (e.g., the functional-coefficient SAR model in Sun (2016), the smooth-coefficient SAR
model in Malikov and Sun (2017) and the heterogeneous SDPD model in Su et al. (2023)). See

Section S.8 in the online supplement for more information.

5. Transformations of Spatial Stable Processes

In this section, we investigate the FDM and the FD coefficient under various transformations. In
applications, estimators and testing statistics are certain functions of the data. Thus, one needs to
calculate the FD coefficients of those estimators and testing statistics to employ the tools in Section
3. Since Ap(s) = sup, sup;ep, Op (i,{j € Dy : dij > s} ,n), it suffices to consider the properties of
LP-FDM 6,(i, I, n) under various transformations.’ Throughout this section, denote the LP-FDM
(p > 1) of the random field {Y;,} ({Zin} or {X;,}) over an independent random field {¢; ,} by
Syp(i, I,n) (dzp(i,1,n) or 6x,(i,1,n)).

First, we consider a family of functions H;, : RPY — RPZ satisfying the following condition:

for all y,y* € RPY,

[Hin (y) = Hin (4°)|| < Bin (v,9°) lly — v°ll.- (5.1)

We write Z; , = H; p, (Yi) in Propositions 5.1-5.3. When B; ,, is bounded by a constant C, from

the following proposition, we have 0z, (i, I,n) < Cdyp(i,I,n). And NED shares a similar property.

Proposition 5.1. If sup,, ;sup, e« Bin (y,3°) < C < oo in (5.1) for some constant C, then

dzp (i, 1,n) < Cdyy (i,I,n) for anyp>1,i€ Dy, I C Dy, n>1.

The 0, p,. defined in Appendix B is also a special case of 8, (i,I,n) with I = I;,,,. Thus, the properties of
FDM 6,(i, I,n) under transformations are also applicable for 0., p.,.
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When B;,, (y,y®) is unbounded, e.g., H; , (z) = 22, the following two propositions summarize

the corresponding results.

Proposition 5.2. We suppose B;,, (y,y*) < Cy (Jlyll* + |y | + 1) in (5.1) for some constants a >

1

0 and C1 < oo. The constants p,q,r > 1 satisfy p~' = ¢~ +r= 1 If[|Y ]| par = sup,,iep, Yinll por <

00, then 8z, (i,I,n) < C1 (2||Y||Tar + 1) dy,q (¢, I,n) for alli € D, I C D, and n > 1.

We note that there is a trade-off between p, ¢, and r. If we want a larger p, then a larger ¢ or a
larger 7 is needed. In the NED case (Lemma A.4, Xu and Lee, 2015a), p is restricted to be 2, but
here p can be any number greater than or equal to 1. In Proposition 5.2, the LP-FD of {Z, ,,} is
preserved by the LI-FD of {Y;,} for some ¢ > p. In fact, when {Y;,} is LP-FD, {Z; ,} might also

be LP-FD, as can be seen in the following proposition.

Proposition 5.3. We suppose Bi, (y,y°*) < Ci(|lyll* + |ly*||“ +1) in (5.1) for some constants
a>1and Cy < oo, and ||Y| ;4 = sup, ;ep, |YinllLa < 0o for some q satisfying ¢ > (a + 1)p and
q > z%’ where p > 1 is a constant. Then for any i € D, and I C D,, there exists a constant

Cy > 0 such that
0z (i,1,m) < Co {dy,p (i, I, n) Y00~ P/ a=ar=r) (5.2)

Let us compare Propositions 5.2 and 5.3. Suppose that we want to establish a CLT for {Z; ,,}.

If we employ Proposition 5.2, by Theorem 3.5, we need Ay, (s) = O(s‘d/Q) for some ¢ > 2. If

instead we employ Proposition 5.3, we need Ay (s) = O(s™") for some k > dpg—ap—p)

as s — OQ.
2(g—ap—p)

Since EETEEL > 1, we require a faster decreasing rate of Ay;p (s) than that of Ay, (s) when we use
Proposition 5.2. The price to employ Proposition 5.2 is a higher order FD coefficient, i.e, g > 2.

Next, we consider a discontinuous nonlinear transformation, 1 (- > 0), which is widely used to

study binary data and censored data.

"Here, Cy might depend on p. If one wants to establish an exponential inequality for Z; ,, one must refer to the
proof of this proposition to determine how C5 depends on p. This is also the case for Proposition 5.7.
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Proposition 5.4. We write Z;,, = 1(Y;,, > 0) and suppose the probability density functions of
{Yin} are uniformly bounded in ¢ and n. Then, for any p > 1, i € D,,, and I C D, there exists a

constant C' > 0 not depending on p, i, I, or n, such that
32 (i,1,n) < C {dyp (i, I,n)}/®TD.

We suppose Y; ,, and Z; ,, are real-valued in the following. In applications, one usually needs to
deal with the summation or product of Y;, and Z;,. The case of summation is a direct result of

Minkowski’s inequality, and thus we omit its proof.

Proposition 5.5. The LP-FDM of{Y; , + Z; n} satisfies 0y 1z, (i,I,n) < by, (3,1,n)+dz, (1,1, n)

foranyi€e D, and I C D, and p > 1.

The case of product is more complicated. Like Propositions 5.2-5.3, we also have two results.

We write X; , =Y, ,Z; in the following two propositions.

Proposition 5.6. We suppose {Y;,, € R} and {Z;,, € R} are two random fields on the independent
random field {€; n} with Y| 1r, = sup,; [|Yinllpr, < 00 and [|Z| 1+, = sup,,; | Zinll -y < 00, where
ri,79 > 1. Let p,qi,q2 > 1 be constants and p~ = qfl + Tfl = qgl + r;l. Then, the FDM of
{Xin} on {en} satisfies xp (i,I,n) < || Z||1ry Ov,q (3 L,0) + [|Y ||y 62,0 (0,1, 1) for any i € Dy,
and I C D,.

As Proposition 5.2, Proposition 5.6 employs higher order FDMs to calculate LP-FDM, i.e., ¢1
and ¢o are both greater than p. We can avoid higher order FDMs with the help of the following

proposition. But the price is that the decay rate of the LP-FDM is slower.

Proposition 5.7. We suppose sup,, ; ||Yinll ;o < 00 and sup,, ; || Zi

| 4 < 00 for some q satisfying

q > 2p and q > p%l, where p > 1 is a constant. Then, for any i € D,, and I C D, there exist

constants C1,Co > 0 such that

Sxp (i, I,n) < C1 {0y (Z'J,n)}(qﬂp)/(pqﬁp) +Co {0z, (i1, n)}(q72p)/(pq72p) )
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In practice, we can use either Proposition 5.6 or 5.7 depending on different conditions. An

advantage of Proposition 5.7 is that the p in the 6, (¢, I, n) coefficient of three or even more random

q—2p
pq—2p

fields could be kept unchanged. However, since < 1, compared to using Proposition 5.6, we
need faster rates for dy, (4, 1,n) and dz, (4, 1,n) (Ay,(s) and Az, (s)) to establish the inequalities

and limit theorems in Section 3 for {X;,} when we apply Proposition 5.7.

6. Comparison of Functional Dependence and NED

In this section, we compare spatial FD and spatial NED thoroughly. Spatial NED was proposed

by Jenish and Prucha (2012). For the convenience of reference, we review its definition first.

Definition. For some p > 1, let Z = {Z;n,i € Dp,n > 1} and € = {€jpn,i € Dyp,n > 1} be two
random fields with || Z; »||;, < 0o, and D, satisfies Assumption 1. The random field Z is said to
be uniformly LP-NED on € if || Zin — B(Zin|Fin ()|l o < C(s) for some constant C' and some
sequence ¥ (s) > 0 with limg o0 ¥ (s) = 0, where F; n(s) = 0 (€0 : dij < s) denotes the sub-o-field
generated by the €;,,’s located within the open ball centering at i € Dy, and of radius s. The C 1is
called the NED scaling factor. The 1 (s) is called the NED coefficient and can be without loss of

generality (w.l.o.g.) assumed to be nonincreasing.

The idea of NED is that if every spatial unit is mainly affected by its close neighbors, while
spatial functional dependence means that the effects of faraway spatial units are negligible. The
ideas of these two concepts are similar. Hence, it is natural to ask whether there is any relationship

between them. We answer this question in the following theorem.

Theorem 6.1. (1) If{Y;,} is LP-FD on an independent random field {€; n}, i.e., lims_y00 Ap(s) =
0, then {Y;n} is uniformly LP-NED on {€; n} with the NED scaling factor C' = 1 and the
NED coefficient 1 (s) < A, (s).

(2) If {Yin} is LP-NED on an independent random field {€;,} with the NED scaling factor

C =1, e, lims oot (s) = 0, and in addition Y;,, = ZjeDn Wijn€jn for any i € Dy,
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where w;jy’s are nonstochastic coefficients, then {Y;,} is LP-FD on {€;,} with the LP-FD

coefficient Ay (s) < 21 (s).

Therefore, LP-FD implies LP-NED and they are equivalent when Y;,, is a linear process in
€jn’s. Now, all properties of a NED random field on an independent random field {¢; ,} also hold
for spatial functional dependent processes, e.g., the following covariance inequality. This implies
that |Cov (Yj,, Y )| decreases to 0 as d;; increases to co. In other words, Y; ,, is mainly correlated

with those Y} ,’s of close neighbors.

Corollary 6.1. Under Assumption 1, if (i) |Y| > = sup,; [|Yinll;2 < 0o, and (ii) {Y;,} is L*-
FD on an independent random field {€; }, i.e., lims oo Ag(s) = 0, then for all i # j € D, and
0.< 5 < %, [Cov (Vi V)| < 2V 12 s ().

Though FD implies NED when ¢; ,’s are independent, we note that FD is not only a special
case of NED, but a more powerful and convenient weak dependence concept. Here, we summarize

the advantages of FD over NED.

1. Spatial FD is more convenient to calculate than spatial NED, especially when we need to
deal with nonlinear transformations. When we need to deal with various nonlinear transfor-
mations, in many cases, only L2-NED is convenient. This is because the definition of NED
involves a conditional expectation, and the conditional expectation is the best predictor under
L?-distance. This property is widely used in the proofs about NED under nonlinear trans-
formations. See, e.g., Lemmas A.2 and A.4 in Xu and Lee (2015a). However, the conditional
expectation is not needed to calculate LP-FDMs or LP-FD coefficients. So, we can usually
obtain the LP-FDM conveniently for any p > 1 under suitable conditions; and the LP-FD

property can be preserved under various transformations, as can be seen from Section 5.

2. As shown in Theorems 3.2 and 3.5, compared to using NED, it usually requires weaker

conditions to establish a CLT and an exponential inequality by using FDM. For CLT, it only
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requires the L2-FD coefficient to decrease slightly faster than s~%2; however, it requires L2-

NED coefficient to decrease slightly faster than s~%. The exponential inequality under FDM

enjoys both less restrictive conditions and a faster decay rate, as discussed in Section 3.1.2.

3. Compared to NED, weaker conditions are needed to establish F'D properties. For example, in
Case 1 of Assumption 3.2 in Xu et al. (2022), in addition to the condition that |w;;| < cd;®,
another condition about the column sums of W,, is needed, which is not needed in our paper

(see Assumption 12(3)).

Due to these reasons, we believe that spatial FDM is a more powerful and convenient weak depen-

dence concept than NED for theoretical studies in spatial econometrics.

7. Conclusion

In this paper, we generalize the concept of functional dependence proposed in Wu (2005) to the
spatial FD to fit the common settings in spatial econometrics. We establish a moment inequality,
an exponential inequality, a Nagaev-type inequality, a law of large numbers, and a central limit
theorem such that they can be employed in future studies in spatial econometrics. We verify the
concepts for a nonlinear SAR model, a threshold SAR model and an SDPD model. Furthermore,
we establish different conditions to preserve the spatial FD property under various transformations.
We compare spatial FD with the spatial NED proposed by Jenish and Prucha (2012), and illustrate
its advantages over the spatial NED.

There are some future research directions. (1) If a better strategy can be found to prove
Theorem B.1 such that the term L%2 in the definition of the second-type LP-FD coefficient ©,,, =
PR L%ZGmyp,L can be dropped, and some conditions in our theoretical results can be relaxed. (2)
We are working on relaxing the assumption that individuals are located in a Euclidean space such

that the FD theory can be applied to more general network data. (3) We are applying the tools

developed in this paper to study the quantile regression of spatial econometric models.
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Appendices

A. Two Lemmas for CLT

Lemma A.1. (CLT for spatially m-dependent triangular array). Let m > 0 be fived. {X; .7 € Ty,,n > 1}
is a spatially m-dependent zero-mean triangular array (i.e., X;, and Xj, are independent when
dij > m), where T, satisfies Assumption 1. And limy_,oo SUp,, e, E[Xi%nl(]Xi7n| > k)] =0,
i.e., Xin’s are uniformly L?-integrable. Denote S, = ZieTn Xin and 02 = Var(S,). Assume
B = liminf, o [T 1 02 > 0. Then
Sn 4 N (0,1).

On
Proof. Since {X;,i € T,,,n > 1} is spatially m-dependent, its ¢-mixing coefficients <Z§k7l(r) =0
for all £,/ € N when r > m. Thus, Assumption 4 in Jenish and Prucha (2009) is satisfied.
Since Assumptions 1, 2 and 5 in Jenish and Prucha (2009) are also satisfied, by Theorem 1(b)
in Jenish and Prucha (2009), = % N (0, 1). u

on
Lemma A.2. (Proposition 6.3.9 in Brockwell and Davis, 1991). Let W,, n = 1,2,... and Ups,
s = 1,2,..., be random wvectors such that (1) Upys LA Us as n — oo for each s = 1,2,...; (2)
Uy % U as s — 00; (3) lims_yoo limsup, oo P (|Wy, — Ups| > €) = 0 for every e > 0. Then

d
W, = U asn — oo.

B. Second-type Functional Dependence Coefficient

In this section, we introduce the second-type LP-functional dependence coefficient, which is mainly
used to develop our theory. In this paper, when we mention an LP-FD coefficient without “second-
type”, we refer to the LP-FD coefficient in Definition 2.2. To begin with, we define & = {4 =
(Lost1y---)  tog = Oyt > tm—1,tm € N forall m > 1} to be the set of all strictly increasing

integer-valued sequences ¢ starting at 1o = 0. The proofs of this section are collected in Section S.3.
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Definition B.1 (The second-type LP-functional dependence coefficient). For any p > 1, m € N,

and v € I, denote I, = {j € Dy : dij € [tm—1,tm)} and

Om,p, = sup sup 0y (i, I; m,,n) = sup sup HYW —Yingim.,
n i n

P
n i€Dy L

For any s € N, the second-type LP-functional dependence coefficient is defined as

o0
— § : d/2
@57P7L = [”fr{ 9m1p7’“’
m=s

dj2
and denote ©,, = O1,, = Z?:;:l Lw{ Orm.poe-

In Definition B.1, I; ,, is the set of individuals whose distance to 7 is within [t,,—1, ¢y ), Which
can be regarded as a ring in R%. Therefore, Op (%, Iim,,n) measures the impact of €;,’s in this
ring on Y; ,, and 0, p, is its supremum over ¢ and n. O,, = > 0 L%Qﬁmw is a weighted sum
of O p, With m > s, measuring the total impact of €;,’s with distance d;; > ¢;,—1. Thus, O, ,
decreases as the distance s increases.

Definition B.1 is motivated by Wu (2005), El Machkouri et al. (2013), Liu et al. (2013), and
Wu and Wu (2016). They define ©, = > ° | 0, 7, where I = (0,1,2,...). Their 7 is a special case
of ours. Using various ¢’s, we can improve some of our theoretical results.'? Notice that they do
not have the term L%Q, but this term is essential to establish the moment inequality in our setup
(see the proof of Theorem B.1).

We now employ 6, ,, and O, , to establish a moment inequality and an exponential inequality,

which will lead to Theorems 3.1 and 3.2. To start with, we first give a crucial lemma.

Lemma B.1. For system (2.1), let F;n(s) = 0 (€j, : dij < s) denote the sub-o-field generated by

the €y, ’s located within the open ball centering at i € D, and of radius s. Denote Vi, (m) =

12We will elaborate on this at the end of this section.
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E (K,n’ﬂ,n (Lm)) —E (}/z,n

Fin (tm=1)). Then for anyi € D,, m €N, p>1 and . € .Z, we have
H‘/iﬂl,b(m)HLp S Qm,p,L- (Bl)

In the following of this section, let T}, be a finite subset of D,, such that |T},| — oo as n — oo,

S, = ZieTn Yin and Z, = Sp/+/|Tn|. The moment inequality is stated as follows.

Theorem B.1. Under Assumption 1, if ©,, < oo for some p > 2 and v € .7, then

Z (Y;,n - E}/z,n) S 2d V p— 1®p,L |Tn’1/2 . (B2)

€Ty

Lp

The main strategy to prove Theorem B.1 is to decompose every (Y;,, —EY;,,) as a summation
of a martingale difference array {Vj,,.(m)} ~_, and apply Lemma B.1 to bound the LP-norm of
the mth element of the martingale difference array by 60,,,,. An application of Theorem B.1 is the

following exponential inequality.

Theorem B.2. Under Assumption 1, if (i) EY;, = 0 for any i € T, (ii) for any real number

p > 2, there exists a sequence V) € . such that 0, . <00, and )

Yo = sggp*”@p7L<p) < 00, (B.3)
p>
then for a = H_Qﬁ and for all t € [0,1y), we have

t\ V2t
m(t) = Elexp (t|Z,]")] <1+ cq <1 - > —,
to to

where tg = (ea'yg‘Qo‘d)_l and cq 18 a constant depending only on . Hence, for any € > 0, by taking

t =to/2, we have

1/(142v) 2/(142v)
P(‘Sn| Z ‘Tnle) S (1 + \/zCa> exp <_|Tn’ € ) .

20d+1leqy@
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Condition (B.3) is similar to (2.21) in Wu and Wu (2016). It assumes that ©,, ) increases
slower than Cp” for some v > 0 as p — oo. As mentioned in Wu and Wu (2016), vy can be
regarded as a dependence-adjusted norm.

Next, we summarize the relations between the two types of LP-FD coefficients in Lemmas B.2-
B.5. Lemmas B.3-B.5 are the keys to transfer the properties of 0,, ), and O, , to the properties
of Ap(s) in Section 3 and they will be used in the proofs of Theorems 3.1-3.5. In the following

lemmas, Ap(s) denotes the LP-FD coefficient of {Y; ,} on {e;}.

Lemma B.2. For anyp>1, m>1, and v € #, we have Oy, ., < 3Ap(tm—1). Immediately,

Osp, <3 Z L%QAP(Lm_l) and ©,, <3 Z L;jn/zAp(Lm_l).

m=s m=1
Lemma B.3. If {Y,} is LY-FD on {€in}, then limg o0 > 7 01, =0 for some v € .

Lemma B.4. For anyp > 1, if A,(0) < 0o and Ap(s) = O (s7") as s — oo for some k > % , then

Op, <00 and Ogp, = 0 (5_1) as § — oo for some 1 € S

Lemma B.5. If {Y;,} is LP-FD on {€;n} for any p > 2 with Ay(s) < O (p¥) O (s™") for some
K > % and v >0 as p — 0o and s — oo, where O (p”) does not depend on s and O (s™") does not

depend on p, then yo = supy>op~ "Op, < 00 for some L € I .

Finally, we illustrate how various ¢’s can improve our results. Take Theorem B.1 as an example.

If we fix ¢ as ¢* = (0,1,2,...), then Op,» = >~ | md/20m,p’ﬁ <3 md/QAp(m —1) by Lemma
B.2. To establish the moment inequality, we need the condition A,(s) = O(s~%?7179) for some
§ > 0 to ensure O, ,« < co. However, from Lemma B.4, whenever A,(s) = O(s~%27%) for some

0 > 0, we have ©,, < oo for some ¢. Similar improvement also appears in the proofs of the LLN,

the CLT and the exponential inequality.
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C. Proofs for Section 3.2

The proofs in this section rely heavily on the theory of the second-type LP-FD coefficient in Ap-
pendix B. Recall .# = {v = (v0,t1,...) 1 to0 = 0,tm > tm—1,tm € N for all m > 1}.
Proof of Theorem 3.4. The idea of the proof is borrowed from that for the LLN in Jenish and Prucha

(2012). By Condition (ii) in this theorem and Lemma B.3, there exists a sequence ¢ € .# such that

lim. > O, =0. (C.1)

m=s

Recall that F; ,(m) = o (€jn : dij < m). For any fixed s € N, we decompose Y;,, — EY;,, as

Y; n EY;,TL - gf,n + nf,nv

)

where &, = E (Yin|Fin (ts)) — EY; , and Nin = Yin — E(Y; 5| Fin (ts)). Therefore, it suffices to
show that both &, and n, satisfy an LLN.
(1) Consider &7, first. It suffices to show that £, satisfies the assumptions of Theorem 3 in

Jenish and Prucha (2009). First, forall s > 1,7 € T),, and n > 1, by conditional Jensen’s inequality,

sup HﬁinHLP <2 sup 1Yinllpp < oo
T, n,ae€T,

n,'LG n n

So, {5;97”,1' € T,,n € N} is uniformly LP-bounded for p > 1, and as a result, it is uniformly L!-
integrable. Second, since ffyn is measurable with respect to F;, (t5) and €;,’s are independent,
in and & are independent when d;; > 2u5. Thus, the a-mixing coefficient dgs(1,1,7) of &, will
become zero when r > 2u5, which indicates that Y >, md_l@gs(l, 1,m) < oco. Therefore, all the

conditions in Theorem 3 in Jenish and Prucha (2009) are satisfied for &;,,. So, for each s > 1,

2 &

€Ty,

1
T — 0 as n — 0. (C.2)
n

Ll
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(2) Next, we will investigate N;n- Recall Vi, (k) =E(Yin|Fin (k) — E(Yin|Fin (tk—1)) and
note that 7?, = ZZO:SH Vin (k). Thus,

o0
T St =12 Z Vi, (k LS S Wi W
et Tl 552 a WLELE (C.3)
Sﬂz Zekﬁl,b— 29k1L—>0ass—>oo
k=s+14i€Ty k=s+1

where the last inequality follows from (B.1) and the last limit follows from (C.1).
Combining (C.2) and (C.3), for all s > 1, we have

oo
lim sup —— Z (Yin —EY; )| <limsup — Z Enll + hm 1SUp o Z Min Z Or.1,0-
n—o0 | n’ i€TH n—eo | n| i€T, |T ’ €Ty k=s+1
By letting s — oo, we complete the proof. |

Proof of Theorem 3.5. This proof adopts the strategy employed by Jenish and Prucha (2012)
in proving their NED CLT. As this proof is lengthy, we break it up into several parts.

Step 1. Decomposition of Y;,. By Condition (i) in this theorem and Lyapunov’s inequality,

Ay(0) = sup sup
n i€Dy

Yin — zn{Jd”>o}H < 2sup sup Vil < oc.
n {€Dy,

Together with Condition (iii) in this theorem, by Lemma B.4, there exists a sequence ¢ € .# such
that
Oy, < oo and B9, = 0(5_1) (C.4)

as s — oo. Now, recall that F;,(m) = o (€jp : djj <m). For any fixed s € N, we decompose
Yin — EY; ,, as follows,

Yin = EYin = &0 + 050
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where {7, = E (Yin

Fin (ts)) = EYipn and 07, = Yin = E(Yin|Fin (1)) Let

)

Sn,s = Z &> Sn,s = Z i ns ai»s = Var (Sps) 672%5 = Var (S’ns> i

1€Ty 1€y

By the Minkowski inequality and S, — ES,, = Sy s + S’nﬁ, we have

= On,s + Ons-

on = ||Sn — ESnHB < HSn,8HL2 + Hgn,s

L2

Similar inequalities hold if we exchange the locations of 0y, 0y, 5,y s in the above inequality, which
leads to

lon — Ons| < Ons and |oy — Ops| < opse (C.5)

Now we consider the spatial FDM of {nfn :1€ Dy,n > 1} on {€n:1€ Dy,n>1}. Recall that
Iim, =1{j € Dp:dij € [tm—1,tm)} and denote ﬁi,n (ts) = 0{€jmn 7 €{dij < ts}\Lim,}, .}v"i’m7b =
o {6}% 1 € Ii’m’L}. Then

9]

nis,n - nf,n,li,m,L =Yin—E (Yiyn ’]:zn (ts)) — Y;,n,fi,m,L +E <Yi,n,1i,m,L inm (ts) V -}—i,m,b) » o bm <L,

F =Y., —-Y
ni,n nZ,n,IZ‘,m’L Evn 1/7;’77':1-7,',m,/, lm > ls.

d/2 .
and ©3, = > F W25 When m < s, ie.,

m,2,.°

S — S S
Let 0m727L = SUpy, SUPiep, ||Min ~ Min Ii ., 12

tm < Ls, because %ﬂl,L (k) =E (Y;,,n“/rz,n (Lk)) -E (Yi,n|Fi,n (Lk—l)) and T]Z‘S,n = Zzozs+1 %,n,b (k), by

Minkowski’s inequality,

> Vinu (k)

k=s+1

S
771’7n7li,m,L

Ornz <50 S0 {2+ [t} < 2500 500 [l 2 = 2500 sp

n €D, 12

o o0
<2 Z sup sup [|Vi . (k)2 <2 Z Ok.2.05
k=st1 " 1€Dn k=s+1
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where the last inequality follows from (B.1). When m > s, i.e., t;, > s, we have

S
9m727L = Sup Sup HEJL - }/;'7n71i,m,L

n €Dy

2 0771,2,[,'

Therefore, by the above two results,

00 s 00 s 00 00
— d/2 d/2 d/2 d/2 d/2
S,L = Z L’rr{ 9;,2,L = Z Lm{ 07571,2,L + Z Ln{ efn,Q,L < 2 Z L'm{ Z ek,Q,L + Z Lm/ 9m72,b
m=1 m=1 m=s—+1 m=1 k=s+1 m=s+1

S (o] (o @]
<2y >y O 20 +2 D PO, =2(s+1)Osp12, > 0 as s — oo,
m=1k=s+1 m=s+1
where the last limit follows from ©;5, = o(s™1) in (C.4). Next, from (C.4), Theorem B.1 implies
that o, = ||Sy, — ESy |2 < 2909,+/|T,| and

S < 2903 ,\/|T|. (C.6)

L2

> ng,

1€y

O—TL,S =

LQZ

From Condition (ii) in this theorem, o, > /B |T},| for all n > N (w.l.o.g. set N = 1). Conse-

quently,
~ 2d@s
lim sup Ins < im 2t~ 0, (C.7)
5§—00 n>1 On 5§—00 B
By (C.5) and (C.7),
lim lim sup ‘1 _Ins ) < i sup Ins _ 0, (C.8)
5200 1300 n 5700 p>1 Op

and

o
C = supsup —= < oo. (C.9)
n>1seN On

Step 2. Establish CLT for S, ; = ZieTn &+ To do so, we need to show that for any fixed s,

3, satisfies the conditions of Lemma A.1. First, { ; n} is 2¢,-dependent because &, is measurable
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with respect to F;, (t5) and €;,’s are independent. Second, by the conditional Jensen inequality,

sup Hfzs,nHLp = su[:; IE (Yin | Fin (ts)) — EYi,n”Lp <2 sup HYi,nHLp < 0.

n, i€y, n €Ty n,i€ Dy,

So, {&;,,} is uniformly LP-bounded. Since p > 2, {7, } is also uniformly L? integrable. Third, by

(C.6), we have % < 2d@§7b. Since lim, o0 ©3 , = 0, there exists so such that whenever s > s,

\jl’% < 2d®§¢ < @. Therefore, it follows from (C.5) that for all s > sg, (o0 — Fns) /V/|Tn] <

on,s/\/|Tn|. Hence,

0.

lim inf > lim inf — lim sup

n—»00 /|Tn’ - n—ooo |Tn’ N—00 |Tn’ -

o B B
On,s .. On On,s >\/§_\/27:\/27>

Thus, by Lemma A.1, when s > sg,

N

LN N (0,1) asn — oc. (C.10)

On,s

Since the value of sy does not affect the later analysis, suppose sop = 1 in the following w.l.o.g.
Step 3. CLT for o, ! ZiETn (Yin —EY; ;). Next, we will show that the just established CLT
for { fn} can be carried over to {Y;,} by the same argument as in Jenish and Prucha (2012).

Denote W, = 0, (Sp, — ES,,) and Uys = 0,,'S,,s. Then W,, — Ups = 0,15, . Condition (3) of

Lemma A.2 holds because

lim limsup P (|W,, — Uyps| > €) = lim limsup P <

500 py00 $70 p—oo

~2
2 G
. . n,s
> €2 ) < lim limsup 55 =0,
§7X pooo Op€

_1 ~
0, Sn,s

(C.11)
where the inequality follows from Markov’s inequality and the last limit is due to (C.7). Next,
we proceed to show W, 4 U~ N (0,1) by contradiction. In order to do that, let .# be
the set of all probability measures on (R, B), and observe that we can metricize .# by, e.g.,

the Prokhorov distance d(-,-). Let pu, and p be the probability measure corresponding to W,
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and U, respectively. Then W, LU = pn — p <=  d(pp,p) — 0 as n — oc.
Now, we suppose u, does not converge to u, i.e., for some € > 0, there exists a subsequence
{n(m)}p_, such that d (py(m), 1) > € for all n(m). From (C.9), 0 < e <0< oo, e,
{%}Zil is a uniformly bounded sequence over s € N. Especially, for s = 1, {Gn(mm/an(m)}:j:l
is a bounded sequence. By the Bolzano-Weierstrass Theorem, it has a convergent subsequence
{O-n(m(kl)),l/o-n(m(kl))}::1 such that oy, (k1)),1/Tn(m(k:)) — P (1) as k1 — oo. For s = 2, consider
{Un(m(kl)),Q/Un(m(k1)) }. By the same argument, there exists a further subsequence {n (m (k1 (k2)))}
such that oy, (m(k, (k2))),2/ Tn(m(k (k2))) — P (2). Repeating this argument, we can construct a subse-
quence {n (m (k1 (k2 (--- (ks)))))} for all s > 1 and oy (ke (ko (- (ks))))),5/ Tr(ms (ka (- (ks))))) — P (8)
as ks — oo. Now construct a subsequence {n;}: n is the first element of {n (m (k1))}, no is the

second element of {n (m (k1 (k2)))}, and so on. Then for all s > 1,

lim 7mws — (s)
l—00 Op,;
It follows from (C.10), Up,s = UU": [a;é T, 5271}, and Slutsky’s theorem that U, S Us ~
N (0,p*(s)) as | — oo. Since |p(s) — 1] < ‘p(s) e e S I
ny ny

Ony,s On,s

+ lim limsup
S—00 l—00

lim [p(s) — 1| < lim limsup ‘p(s) - - 1' =0,

§—00 S=00  1_yog On, On

where the last limit follows from (C.8). Therefore, Us 4 U. And by (C.11),

lim limsup P (|W,,, — Up,s| > €) < lim limsup P (|W,, — Uys| > €) = 0.
H

$700 [_soo S0 paoco

Then by Lemma A.2, W, 4 U~ N(0,1) as I — oo. So, d(Wy,,U) — 0. Since {m;} C
{n(m)}, d(W,,,U) — 0 contradicts the assumption that d (,un(m),,u) > ¢ for all n(m). Hence,
o7t (Sy —ES,) =Wy, S U. n
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D. Conditional Spatial Functional Dependence

We generalize the concept of spatial FDM to the conditional spatial FDM. The only difference to the
original spatial functional dependence is that now the underlying random field becomes condition-
ally independent (see, e.g., Chow and Teicher, 2003) and all expectations are taken conditionally.
Let (Q, F,P) be the underlying probability space and C be a sub-o-field of F.

Let Y,, be defined as in (2.1), where €;,’s are conditionally independent given C. So, €;,’s
might be dependent on each other unconditionally. Suppose that conditional on C, ezn is an
iid. copy of €,. For aset I C D,, define ¢, 5 = 62:

L ifi el and €1 = €y if @ ¢ I; we

/
denote €, = ((e’ ) b ) . Then Yj,,; = gin(€nr) is a coupled version of Y;, on I and
i€Dy,

i,n,I

Yn,[ - (Yl,n,lv cee 7Yn,n,1),~

Definition D.1 (Conditional spatial functional dependence). Let Y, and €, be defined as above.

Forp>1mn > 1 and I C D,, define 55 (t,I,n) = ||[Yin —Yinrs

|ppc- And we say that Y =
{Yin,i € Dp,n > 1} is C-conditionally LP-functionally dependent or C-conditionally p-stable on

€ = {€in,1 € Dyp,n > 1} if the C-conditional LP-functional dependence coefficient

Ag(s) = sup sup 55 (t,{j : dij > s} ,n) = 0 almost surely (a.s.) as s — oo. (D.1)
n>14i€Dy,

The conditional spatial functional dependence inherits the properties of the unconditional
version. This is because the theorems used in the proofs of the unconditional theorems can
be generalized to the corresponding conditional versions (see Prakasa Rao, 2009; Roussas, 2008;
Yuan, Wei and Lei, 2014 and the supplementary document of Forchini, Jiang and Peng, 2018).
Now, we state our LLN and CLT under conditional spatial functional dependence. In the fol-
lowing, suppose that {Y;,,i € D,,,n > 1} is generated by € = {€;,7 € D,,n > 1}, and ¢;,,’s are
conditionally independent given C. T,, is a finite subset of D, satisfying |T},| — oo as n — oo, and

we write S, = ZieTn Y and 02 = Vare (S,).
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Theorem D.1 (Law of large numbers). Under Assumption 1, suppose that sup,,>1 sup;cp, [|Yinll o o <
00 a.s. for some p > 1 and {Y;,} is C-conditionally L*-FD on {€;}, i.e., lims00 A1(s) = 0 a.s.
as s — oo. Then

T~ (S, — EeS,) 5 0.

Proof. From Theorem 3.4, |Tp,| ™" ||Sn — EcSnllz1e 22,0 as n — oo. Thus, by the Markov inequal-
ity, for any € > 0,
Ec {1||Tal ™ 180 — EcSall > ¢ } =50,

as n — o0o. Since the indicator function 1(-) is always bounded by 1, by the law of iterated

expectation and the bounded convergence theorem,
E {1 [|Tn|*1 1Sy — EeSn|| > e]} — EE¢ {1 [|an1 1Sy — EeSn|| > e} } =0,

ie., |Tn| ™' (S — EcS,) 5 0. ]

Theorem D.2 (Central limit theorem). Under Assumption 1, suppose the following conditions
hold: (1) sup,>y supiep, [|Yinllpo e < 00 a.s. for some p > 2; (2) liminfy, o0 T 02 >0 as.;
(3) the C-conditional L*-FD coefficient of {Y;n} on {e;n} satisfies Aao(s) = O (s7F) a.s. as s — 00
for some Kk > %. Then

Sp —EcSp a

— N (0,1).
o (0,1)

a.s

Proof. From Theorem 3.5, for all x € R, P¢ <S”_UECS" < :c) 5>®(x) as n — oo, where ®(-) is the

cumulative distribution function of N (0,1). Since P¢(-) is always bounded by 1, by the law of

iterated expectation and the bounded convergence theorem,

p(S”_ECS" §56> = EP, <S”_ECS” §$> — B(z),
o %

n n

as n — oo for all z € R, i.e.,&l%]ics”iN(O,l). |
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Supplementary Material

Wu, Z., Jiang, W., & Xu, X. (2024). Supplement to “Applications of Functional Dependence
to Spatial Econometrics”, Econometric Theory Supplementary Material. To view, please visit:

https://doi.org/10.1017/S026646662400015X.
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