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Abstract

In this paper, we generalize the concept of functional dependence from time series (Wu, 2005)

and stationary random fields (El Machkouri, Volný and Wu, 2013) to nonstationary spatial

processes. Within conventional settings in spatial econometrics, we define the concept of spatial

functional dependence measure and establish a moment inequality, an exponential inequality,

a Nagaev-type inequality, a law of large numbers, and a central limit theorem. We show that

the dependent variables generated by some common spatial econometric models, including

spatial autoregressive models, threshold spatial autoregressive models and spatial panel data

models, are functionally dependent under regular conditions. Furthermore, we investigate the

properties of functional dependence measures under various transformations, which are useful in

applications. Moreover, we compare spatial functional dependence with the spatial mixing and
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spatial near-epoch dependence proposed in Jenish and Prucha (2009, 2012), and we illustrate

its advantages.

Key words: spatial functional dependence, near-epoch dependence, law of large numbers, central

limit theorem, spatial autoregressive model, spatial dynamic panel data model
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1. Introduction

In recent years, spatial econometric models have been widely applied to various fields of eco-

nomics, e.g., agricultural economics, international trade, climate economics, and regional and

urban economics. Accordingly, various spatial econometric models and estimation methods are

investigated in the literature. To study asymptotic theories for estimators of spatial economet-

ric models, some limiting laws and dependence concepts are indispensable. Early development of

spatial econometrics, especially linear spatial models, has relied mainly on the theories of linear-

quadratic forms of independent variables. See, Kelejian and Prucha (1998, 2001), Lee (2004, 2007),

and Yu, de Jong and Lee (2008), among many others. However, these theories are not applicable

to some recent development in spatial econometrics, e.g., the spatial panel data model with en-

dogenous spatial weights matrix (Qu, Lee and Yu, 2017), robust estimators (Liu, Xu, Lee and Mei,

2022), quantile estimators (Xu, Wang, Shin and Zheng, 2022), and nonlinear spatial econometric

models (Xu and Lee, 2015a,b). In these papers, the authors employ weak spatial dependence

concepts like spatial strong mixing or spatial near-epoch dependence (NED). Strong mixing and

NED are widely used in time series (Davidson, 1994; Doukhan, 1994) and stationary random fields

(Bolthausen, 1982; Dedecker, 1998)1, and they are generalized to spatial econometric settings by

Jenish and Prucha (2009, 2012).

However, strong mixing and NED have certain shortcomings. The strong mixing coefficient

involves the calculation of supremum over two σ-fields and hence is quite complicated and incon-

venient (Doukhan and Louhichi, 1999; Wu, 2005; Xu and Lee, 2024). Moreover, even some AR(1)

processes do not satisfy the strong mixing condition (Andrews, 1984; Wu, 2005). For NED, its ap-

plication is mainly restricted to L2-NED, as Lp-NED (p ̸= 2) is usually not easy to establish; and

in some cases, some strong moment conditions are needed to preserve NED properties. Therefore,
1A random field Y : Rd( or Zd) → RpY is stationary means that the joint distribution of (Ys1 , Ys2 , . . . , Yst)

does not change under the translation of (s1, . . . , st), i.e., the joint probability density (or mass) function
f(Ys1 , Ys2 , . . . , Yst) = f(Ys1+r, Ys2+r, . . . , Yst+r) for any (s1, . . . , st) and r ∈ Rd( or Zd).

3



we aim to find a better notion of weak spatial dependence.

In Wu (2005), the concept of functional dependence (FD), also called physical dependence,

is proposed. It is often easy to verify and has many good properties. Based on this concept,

Liu, Xiao and Wu (2013) and Wu and Wu (2016) establish the Nagaev-type, Rosenthal-type, and

exponential inequalities. El Machkouri et al. (2013) generalize the functional dependence from

time series to stationary random fields located in Zd and study its limit theorems. Functional

dependence has been widely used in statistics to establish asymptotic theories of various statistics

(Chen, Xu and Wu, 2013; Wu, 2011; Wu and Wu, 2016; Zhou and Wu, 2009).

However, the theory of FD on stationary random fields in Zd in El Machkouri et al. (2013)

does not apply to spatial econometrics directly. The reasons for this are two-fold: (1) the spatial

units are located in Zd, which is seldom the setting in spatial econometrics; (2) the data-generating

process is supposed to be homogeneous and the spatial process is required to be stationary. On

the contrary, in spatial econometrics, the spatial units are usually unevenly spaced, and the spatial

random variables are often nonstationary and heterogeneous triangular arrays. To fill this gap,

we generalize the spatial functional dependence in El Machkouri et al. (2013). We allow (1) the

spatial units to be located in an unevenly spaced lattice, (2) the spatial process to be nonstationary,

and (3) the random variables to be a heterogeneous triangular array. Based on the spatial func-

tional dependence measure (FDM), we establish a moment inequality, an exponential inequality, a

Nagaev-type inequality, a law of large numbers (LLN), and a central limit theorem (CLT) that are

sufficiently general to accommodate more applications of interest. We want to emphasize that the

generalization from El Machkouri et al. (2013) to our paper is not trivial, because the techniques

in their proofs do not apply to our setup due to heterogeneity and nonstationarity.

Our FDM concept overcomes the shortcomings of mixing and NED. (1) It is easy to calculate

for many spatial econometric models, as it does not involve σ-field or conditional expectation. For

convenience, Su, Wang and Xu (2023) apply the theory of spatial FDM developed in this paper

to study a heterogeneous spatial dynamic panel data model. (2) Compared to NED, it can be
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conveniently established under Lp-norm for any p ≥ 1, and is, therefore, more flexible, especially

under nonlinear transformations. (3) Compared to those needed for NED, weaker conditions suffice

for a CLT and an exponential inequality via spatial FDM.

This paper is organized as follows. In Section 2, we present the definitions of spatial FDM

and spatial FD coefficient. In Section 3, we investigate their theoretical properties, including some

inequalities, an LLN, a CLT, and a heteroskedasticity and autocorrelation consistent estimator

for the variance term in the CLT. In Section 4, we calculate the FDM of a nonlinear spatial

autoregressive (SAR) model, a threshold SAR model and a spatial panel data model. In Section 5,

we investigate the properties of spatial FDM and the spatial FD coefficient under various common

transformations. In Section 6, we compare spatial FDM with NED. Section 7 concludes this paper.

The proofs for the LLN and the CLT are collected in the appendices, and all other proofs are

provided in the supplementary material. All sections, lemmas and equations whose numberings

begin with “S” (e.g., Lemma S.3) are in the supplementary material.

Notation: The set of positive integers is denoted by N ≡ {1, 2, . . .}. For any column vector

x = (x1, x2, . . . , xd)
′ ∈ Rd, where Rd is the d-dimensional Euclidean space, ∥x∥ = (x′x)1/2 de-

notes its Euclidean norm, ∥x∥∞ = max1≤k≤d |xk| represents its infinity vector norm, and ∥x∥1 =∑d
k=1 |xk| denotes its 1-norm. For any random vector X ∈ Rd, its Lp-norm is defined as ∥X∥Lp ≡

[E(∥X∥p)]1/p. For any square matrix A = (aij)n×n, its maximum row sum norm is defined as

∥A∥∞ = max1≤i≤n
∑n

j=1 |aij |, Ai· denotes its ith row, and |A| is defined as |A| = (|aij |)n×n.

For any real number a, ⌊a⌋ denotes its integer part, i.e., ⌊a⌋ = max {b ∈ Z : b ≤ a}, and ⌈a⌉ ≡

min {b ∈ Z : b ≥ a}. Let (Ω,F ,P) be a probability space. For any sub-σ-field C of F , we write

PC (·) ≡ P (· | C), EC (·) ≡ E (· | C), and VarC (·) ≡ Var (·|C). For a random vector X, let ∥X∥Lp,C =

[EC (∥X∥p)]1/p. Let p→, Lp

−→, d→, and a.s.−−→ denote convergence in probability, Lp convergence, con-

vergence in distribution, and convergence almost surely, respectively. For any set D, |D| denotes

its cardinality. For any two nonnegative functions f(x) and g(x) defined on [0,∞), f(x) = O(g(x))

as x → ∞ means that there exist constants M > 0 and x0 such that f(x) ≤ Mg(x) whenever
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x ≥ x0 and f(x) <∞ for all x ∈ [0,∞)2. For two sequences {an} and {bn}, an ∼ bn if and only if

(iff) limn→∞
an
bn

= 1.

2. Spatial Functional Dependence Measure and Spatial Functional

Dependence Coefficient

In this section, we define the spatial FDM and the spatial functional dependence coefficient. First,

we introduce some notation. Suppose there are some individuals (e.g., persons, cities, countries),

also called spatial units in this paper, located in a lattice Dn ⊂ Rd. Here, Dn can either be a

finite set whose cardinality |Dn| = n, or be a countably infinite set. We focus on two settings:

(1) for cross-sectional data with n individuals, |Dn| = n; (2) for spatial panel data, each spatial

unit i is located in D̄n ⊂ Rd, but we regard (i, t), the combination of spatial unit i and time t,

as a point in Rd+1 and define Dn ≡ D̄n × {. . . , T − 1, T} ≡ {(i, t) : i ∈ D̄n, t ≤ T} ⊂ Rd+1.

In setting (2), |Dn| = ∞. For any two individuals i = (i1, . . . , id) and j = (j1, . . . , jd) in Rd,

dij ≡ max1≤k≤d |ik − jk| denotes their distance.

Let ϵ = {ϵi,n, i ∈ Dn, n ≥ 1} be an Rpϵ-valued independent random field. Another random field

Y = {Yi,n, i ∈ Dn, n ≥ 1} is generated by

Yi,n = gi,n (ϵn) , (2.1)

where {gi,n, i ∈ Dn, n ≥ 1} is a set of RpY -valued Borel-measurable functions and ϵn =

((
ϵ′i,n

)
i∈Dn

)′
.

In some models, e.g., a linear SAR model, the explicit functional form of gi,n(·) is known. However,

in many nonlinear spatial econometric models, e.g., the SAR Tobit model in Xu and Lee (2015a),

we do not know the explicit functional form of gi,n(·), but it does not affect our analysis. See
2In standard big O notation, usually it is not required that f(x) < ∞, but we impose this for the convenience of

our presentation. With this definition, we can safely claim that (i) supx∈A g(x)−1O (g(x)) < ∞ for any closed set
A ⊂ {y ∈ [0,∞) : g(y) > 0}, (ii)

∑∞
m=1 O(m−δ) < ∞ for any δ > 1, and (iii) f(x) = O(x−α) for some α > 0 implies

f(x) ≤ C (x+ 1)−α for any x ∈ [0,∞), where C > 0 is a constant not depending on x.
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Section 4.2 for more details.

Let
((

(ϵ∗i,n)
′
)
i∈Dn

)′
be an independently and identically distributed (i.i.d.) copy of ϵn. For any

set I ⊂ Dn, we define ϵi,n,I ≡ ϵ∗i,n if i ∈ I and ϵi,n,I ≡ ϵi,n if i /∈ I; we write ϵn,I ≡
((

ϵ′i,n,I

)
i∈Dn

)′
.

Furthermore, Yi,n,I = gi,n (ϵn,I) is called a coupled version of Yi,n on I and Yn,I =

((
Y ′
i,n,I

)
i∈Dn

)′
.

All our discussion in Sections 2, 3, and 5 is based on (2.1).

Throughout the paper, we maintain these conventions on notation and the following assumption

concerning the lattice Dn.

Assumption 1. For all i ̸= j ∈ Dn, dij ≥ 1.

Assumption 1 employs the increasing-domain asymptotics and rules out the scenario of infilled

asymptotics (also called fixed domain asymptotics), and it is commonly used in the spatial econo-

metrics literature (Jenish and Prucha, 2009, 2012; Liu et al., 2022; Qu and Lee, 2015; Xu and Lee,

2015a,b, 2018; Xu et al., 2022). As n increases to infinity, the diameter of Dn also tends to infinity.

When we consider the geographical distance between two cities, Assumption 1 means that the cen-

ters of cities cannot be too close to each other. Although the diameter of the earth is finite, which

restricts the diameter of Dn, when we apply our theory, we expect that the sample size is large

enough such that our asymptotic theory can approximate well. In addition, the distance might

be “social-economic distance”3, which means that some coordinates might be economic or social

characteristics of the spatial units. So even if the geographical distance between two individuals

is small, their social-economic distance might be large. In spatial statistics and computer science,

sometimes researchers consider infill asymptotics, e.g., when we study the image of someone’s brain,

but we do not consider infill asymptotics in this paper.

Now, we are ready to introduce our main concepts.
3See Conley and Topa (2002) and the paragraph below Assumption 1 in Qu and Lee (2015) for some discussion

about social-economic distance.
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2.1. Spatial Functional Dependence Measure

Definition 2.1. For any p ≥ 1, n ≥ 1 and I ⊂ Dn, we define the (spatial) Lp-functional dependence

measure as

δp (i, I, n) ≡ ∥Yi,n − Yi,n,I∥Lp = ∥gi,n(ϵn)− gi,n(ϵn,I)∥Lp .

When I = {j} is a singleton, we simplify the notation as δp (i, j, n) ≡ δp (i, {j} , n).

When I = ∅, δp (i, ∅, n) = 0, which causes no conflict. Definition 2.1 is a generalization of those

in Wu (2005) and El Machkouri et al. (2013). The differences lie in three aspects. First, the index

sets in Wu (2005) and El Machkouri et al. (2013) are respectively Z and Zd. Instead, we consider

an unevenly spaced lattice Dn in Rd, which is in line with the paradigm of spatial econometrics.

Second, Wu (2005) and El Machkouri et al. (2013) require the nonlinear transformation g to be

invariant over i and n, which is ruled out by almost all spatial econometric models, but we allow

different gi,n for different i and n. Third, Wu (2005) and El Machkouri et al. (2013) set ϵi,n’s to

be i.i.d., but we allow the ϵi,n’s to be non-identically distributed. Thus, {Yi,n, i ∈ Dn} might be

nonstationary and heterogeneous in our setup.

Spatial statistics usually focuses on Gaussian processes and many results are based on correla-

tion or covariance functions, and FDM is closely related to the correlation or covariance of Yi,n and

Yi,n,I .4 Consider a linear process Yi,n =
∑

j∈Dn
Aij,nϵj,n, where |Dn| = n, Aij,n’s are constant and

ϵj,n’s are i.i.d. with expectation zero and unit variance. For any set I ⊂ Dn, direct calculations

show that 1
2δ2 (i, I, n)

2 +Cov(Yi,n, Yi,n,I) = Var(Yi,n). If we consider the case where Var(Yi,n) = 1,

i.e.,
∑

j∈Dn
A2

ij,n = 1, the previous relationship becomes Corr(Yi,n, Yi,n,I) = 1 − 1
2δ2 (i, I, n)

2. In

addition, the FD property is also related to the covariance between two different Yi,n’s and the

estimation of the asymptotic variance of n−1/2
∑

i∈Dn
(Yi,n − EYi,n).5 Since FDM does not require

4We thank an anonymous referee for sharing his/her deep insight into both the relationship between FDM and
the correlation (or covariance) functions and the possible applications of FDM in studying non-Gaussian spatial
processes.

5See Corollary 6.1 and Section 3.3 for details.

8



ϵi,n’s to be normally distributed, a door is open to studying the important and challenging problem

of inference of non-Gaussian spatial processes.

2.2. Functional Dependence Coefficient

Definition 2.2 (The Lp-functional dependence coefficient). For any p ≥ 1 and s ≥ 0, we define

the Lp-functional dependence (Lp-FD) coefficient, also called p-stability coefficient, as

∆p(s) ≡ sup
n

sup
i∈Dn

δp (i, {j ∈ Dn : dij ≥ s} , n) . (2.2)

When ∆p(s) → 0 as s→ ∞, {Yi,n} is said to be Lp-functionally dependent (Lp-FD) or p-stable on

the independent random field {ϵi,n}.

 

Figure 1: An illustration of δp (1, I ≡ {j ∈ Dn : d1j ≥ s} , n) ≡ ∥Y1,n − Y1,n,I∥Lp

Figure 1 illustrates the definition of ∆p(s). The Lp-FD coefficient defined above is easy to calcu-

late and enjoys many desirable properties as shown in Sections 3-6. The δp (i, {j ∈ Dn : dij ≥ s} , n)

in (2.2) measures the total influence of ϵj,n’s (dij ≥ s) on Yi,n, defined as the magnitude of the

change of Yi,n under Lp-norm if ϵj,n’s are replaced by their i.i.d. copy ϵ∗j,n’s simultaneously. There-

fore, ∆p(s) → 0 as s→ ∞ implies that the total impact from individuals far away can be arbitrarily

small uniformly in both i and n. Note that by Lyapunov’s inequality, if {Yi,n} is Lp-FD on {ϵi,n},
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it is also Lq-FD on {ϵi,n} for all q ∈ [1, p]. Although we do not know whether ∆p(s) is weakly

decreasing, ∆p(s) has a property similar to monotonicity: ∆p(s) ≤ 3∆p(s̃) for any s ≥ s̃ (Lemma

S.3).

Compared with the functional dependence concepts in Wu (2005) and El Machkouri et al.

(2013), ours is better suited for spatial econometric settings. Since {Yi,n} might be nonstationary

and heterogeneous, we need to calculate the spatial FDM of every unit and take the supremum

over all spatial units, but Wu (2005) and El Machkouri et al. (2013) do not need to do so, as they

study stationary processes. In addition, our concept ∆p(s) employs the information of distance s,

while El Machkouri et al. (2013) define ∆p(s) as ∆p ≡
∑

j∈Rd δp (i, j). So, our definition shares

some similarity to spatial NED.

Compared with mixing (Jenish and Prucha, 2009) and NED (Jenish and Prucha, 2012), our

functional dependence coefficient in Definition 2.2 is more convenient. The strong mixing coefficient

is challenging to calculate since it involves complicated manipulation of taking the supremum over

σ-fields. Calculating spatial NED coefficient involves conditional expectation, which sometimes is

not easy. But calculating the Lp-FD coefficient is quite convenient because the construction of

the coupled version Yi,n,I is explicit. The advantage of functional dependence over spatial NED is

discussed in detail in Section 6.

Furthermore, we define the concept of the second-type functional dependence coefficient, which

is mainly used in our proofs, in Appendix B. Moreover, we generalize the concept of Lp-FD to the

conditional Lp-FD, which is particularly useful for spatial panel data models. See Appendix D for

details.

3. Properties of Spatial Functional Dependence

In this section, we establish some useful inequalities, an LLN, and a CLT for the Yi,n generated by

(2.1). Throughout this section, we let Tn be a finite subset of Dn, we assume |Tn| → ∞ as n→ ∞,
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and write Sn ≡
∑

i∈Tn
Yi,n.6

3.1. Inequalities under Spatial Functional Dependence

Moment and probability inequalities are crucial for developing limit theorems. In this subsection,

we establish a moment inequality, an exponential inequality and a Nagaev-type inequality under

spatial functional dependence.

3.1.1. A moment inequality

Theorem 3.1. Under Assumption 1, if {Yi,n} is Lp-FD on {ϵi,n} for some p ≥ 2 with the Lp-FD

coefficient ∆p(s) = O (s−κ) for some κ > d
2 as s→ ∞, then

∥Sn − ESn∥Lp ≤ C |Tn|1/2 ,

where C > 0 is a constant depending neither on Tn nor n.

Theorem 3.1 implies that
∥∥∑

i∈Tn
(Yi,n − EYi,n)

∥∥
Lp = O(

√
|Tn|) as n → ∞, the same order

as the i.i.d. case. This inequality not only gives the convergence rate of the LLN but also plays

an essential role in establishing the CLT and the exponential inequality. The constant C has an

explicit form, see the proof of this theorem and Theorem B.1 for more information.

3.1.2. An exponential inequality

Exponential inequalities play an indispensable role in high-dimensional statistics, nonparametric

and semiparametric econometrics. White and Wooldridge (1991) collect some exponential inequal-

ities for time series. Xu and Lee (2018) establish an exponential inequality for spatial NED random

fields. Wainwright (2019) focuses on the independent case for high-dimensional models.
6When we study a cross-sectional spatial econometric model, Tn = Dn and |Dn| = n, and we do not need to

introduce Tn. However, when we study a spatial panel data model, we usually assume that the underlying data
originate from t = −∞, and thus, |Dn| = ∞. In practice, the observable data are only a subset of all yit’s. Thus,
we introduce Tn ⊂ Dn, rather than use Dn.
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Theorem 3.2. Under Assumption 1, if (i) EYi,n = 0 for all n ≥ 1, i ∈ Tn, and (ii) {Yi,n} is

Lp-FD on {ϵi,n} for any real number p ≥ 2 with the Lp-FD coefficient ∆p(s) ≤ O (pν)O (s−κ) for

some κ > d
2 and ν ≥ 0 as p→ ∞ and s→ ∞, where O (pν) does not depend on s and O (s−κ) does

not depend on p, then for any ϵ > 0,

P (|Sn| ≥ |Tn| ϵ) ≤ C1 exp
(
−C2 |Tn|1/(1+2ν) ϵ2/(1+2ν)

)
, (3.1)

where the constants C1, C2 > 0 depend neither on Tn, n nor ϵ.

The condition ∆p(s) ≤ O (pν)O (s−κ) restricts the speed at which ∆p(s) decreases as s → ∞

and the speed at which ∆p(s) increases as p → ∞, and requires that the effects of s and p on

∆p(s) be separable. This condition can be easily satisfied for the SAR models discussed in Section

4.2. However, it is still possible that this condition is not satisfied, e.g., ∆p(s) = ηs/p for some

0 < η < 1. For such situations, one can refer to Theorem B.2 in Appendix B for a more general

condition.

Next, we compare our exponential inequality with those in the literature.

1. Compared with the exponential inequality in Xu and Lee (2018), ours enjoys some desirable

features. First, in our exponential inequality, the term |Tn|1/(1+2ν) does not depend on d.

Second, Xu and Lee (2018) require the NED coefficient to decrease exponentially fast, while

we allow the Lp-FD coefficient to decrease at the speed of a power function. Third, the

decay rate of our exponential inequality is faster than that of Xu and Lee (2018). There-

fore, all the shortcomings of the exponential inequality in Xu and Lee (2018) pointed out by

Yuan and Spindler (2022, p.4) have been overcome.

2. Yuan and Spindler (2022) also study the exponential inequality under NED. Compared with

their results, our exponential inequality does not have a remainder term.

3. Compared with the standard Bernstein’s inequality and Hoeffding’s inequality (Wainwright,
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2019), we see that when ν = 0 in (3.1), the decay rate with respect to n is the same as the

independent case; when ν > 0, the decay rate is slower.

3.1.3. A Nagaev-type inequality

The condition ∆p(s) ≤ O (pν)O (s−κ) in Theorem 3.2 usually requires that Yi,n have infinite order

of moments, which might be restrictive in some applications in spatial econometrics. In fact, if only

a finite order of moments exists, we have a Nagaev-type inequality. Nagaev (1979) establishes the

Nagaev inequality for i.i.d. random variables. Liu et al. (2013) and Wu and Wu (2016) establish

two Nagaev-type inequalities for functionally dependent time series. In this paper, we follow the

idea in Wu and Wu (2016) to establish a Nagaev-type inequality for functionally dependent spatial

variables. To begin with, we generalize the dependence-adjusted norm (DAN) concept given in

Wu and Wu (2016), which plays the role of Lp-norm in the traditional Nagaev inequality (Lemma

S.11). For any ω ≥ 0, we define the DAN as

∥Y.∥p,ω ≡ sup
s≥0

(s+ 1)ω ∆p(s) <∞.

Theorem 3.3. We assume EYi,n = 0 for all i ∈ Tn. If ∥Y.∥p,ω < ∞ for some ω > d and p > 2.

Then, for all x > 0 and κ ≥ 1 satisfying κ > 3
2(ω−d) ,

P (|Sn| ≥ 2x) ≤
C1 ∥Y.∥pp,ω |Tn|

xp
+ C2 |Tn|κd exp

(
− C3x

2

∥Y.∥22,ω |Tn|

)
,

where C1, C2, C3 > 0 are constants depending neither on x, n nor Tn.

3.2. Limit Theorems under Spatial Functional Dependence

Now, we establish an LLN and a CLT under spatial functional dependence, which are vital to

establishing large sample properties of various estimators and test statistics in econometrics and

statistics.
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3.2.1. The law of large numbers

Theorem 3.4. Under Assumption 1, if (i) ∥Y ∥Lp = supn supi∈Dn
∥Yi,n∥Lp < ∞ for some p > 1,

and (ii) {Yi,n} is L1-FD on {ϵi,n}, i.e., lims→∞∆1(s) = 0, then

|Tn|−1 (Sn − ESn)
L1

→ 0.

We note that the moment inequality (Theorem 3.1) also implies an LLN. Theorem 3.1 requires

some conditions on Lp-spatial FD coefficient (p ≥ 2); however, Theorem 3.4 only imposes conditions

on L1-FD coefficient for the LLN, and it only requires that lims→∞∆1(s) = 0 without any specific

decreasing rate.

3.2.2. The central limit theorem

Theorem 3.5. When pY = 1, under Assumption 1, if (i) supn supi∈Dn
∥Yi,n∥Lp < ∞ for some

p > 2 , (ii) B ≡ lim infn→∞ |Tn|−1 σ2n > 0, where σ2n ≡ Var (Sn), and (iii) the L2-FD coefficient of

{Yi,n} on {ϵi,n} satisfies ∆2(s) = O (s−κ) as s→ ∞ for some κ > d
2 , then

Sn − ESn
σn

d→ N (0, 1) .

Conditions (i)-(ii) in Theorem 3.5 are standard in establishing CLTs (see Jenish and Prucha,

2012, etc.). Condition (iii) requires that the dependence among Yi,n’s cannot be too strong.

The NED CLT in Jenish and Prucha (2012) requires that the L2-NED coefficient ψ(s) satisfies∑∞
m=1m

d−1ψ(m) < ∞. Our spatial functional dependence CLT requires only that the L2-FD

coefficient ∆2(s) decreases faster than s−d/2, which is less restrictive.

By the Cramér-Wold device, we can generalize Theorem 3.5 to the multivariate case:

Corollary 3.1. We write Σn ≡ Var (Sn) and λmin(Σn) is the minimum eigenvalue of Σn. When

pY ≥ 1, under Assumption 1, if (i) supn supi∈Dn
∥Yi,n∥Lp < ∞ for some p > 2, (ii) B ≡
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lim infn→∞ |Tn|−1 λmin(Σn) > 0, and (iii) the L2-FD coefficient of {Yi,n} on {ϵi,n} satisfies ∆2(s) =

O (s−κ) for some κ > d
2 , then

Σ−1/2
n (Sn − ESn)

d→ N (0, IpY ) .

3.3. Heteroskedasticity and Autocorrelation Consistent Estimator

For inference, we propose a heteroskedasticity and autocorrelation consistent (HAC) estimator for

the variance term Vn ≡ Var(|Tn|−1/2Sn) = |Tn|−1Σn in the CLT (Corollary 3.1). The idea is

borrowed from Kojevnikov, Marmer and Song (2021). We assume EYi,n = 0 for all i ∈ Tn. Then,

the variance of |Tn|−1/2Sn is

Vn ≡ Var(|Tn|−1/2Sn) =
∑
s≥0

vn(s), (3.2)

where vn(s) = |Tn|−1
∑

i∈Tn

∑
j∈Tn:dij∈[s,s+1) E(Yi,nY ′

j,n).

As in the time series literature, we employ a kernel function k(·) : R → [−1, 1] to assign

weights to the auto-covariance terms vn(s) so that we can estimate Vn consistently. Let bn be the

bandwidth. Then, the HAC estimator of Vn is given by

V̂n =
∑
s≥0

kn(s)v̂n(s), (3.3)

where kn(s) = k(s/bn) and v̂n(s) = |Tn|−1
∑

i∈Tn

∑
j∈Tn:dij∈[s,s+1) Yi,nY

′
j,n.

Next, we establish the consistency of the HAC estimator by imposing certain assumptions on

the moment and weak dependence of {Yi,n}, the bandwidth bn, and the kernel function k(·).

Theorem 3.6. Let 2 < p0 ≤ q0 ∈ R satisfy 1
p0

+ 3
q0

= 1
2 . We suppose EYi,n = 0 for all i ∈ Tn.

If (i) ∥Y ∥Lq0 ≡ supi,n ∥Yi,n∥Lq0 < ∞, (ii) the kernel function k(·) satisfies k(0) = 1, k(u) = 0

when |u| > 1, k(u) = k(−u) for all u ∈ R, and |k(u) − 1| ≤ Ck|u|1+ck for some constants
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Ck, ck > 0, (iii) {Yi,n} is L2-FD on an independent random field {ϵi,n} with the L2-FD coefficient

satisfying ∆2(s) = C∆s
−c∆ , where the constants C∆ > 0 and c∆ > max

{
ck + d+ 1, (2q0−6)d

q0−6

}
, (iv)

bn = Cb|Tn|cb for some constants Cb > 0 and cb ∈ (0, 1
2d), then as n→ ∞,

V̂n − Vn = op(1).

Remark 3.1. We note that 2 < p0 ≤ q0 and 1
p0

+ 3
q0

= 1
2 imply q0 ≥ 8. Condition (ii) is satisfied by

most common kernel functions with compact supports, such as k(u) = 1(|u| ≤ 1). Condition (iii)

requires the L2-FD coefficient of {Yi,n} to decrease sufficiently fast. Condition (iv) assumes that

the bandwidth bn increases as a power function of |Tn|.

4. Examples of Spatial Stable Processes

In this section, we provide some primitive conditions to calculate the spatial FDM and the Lp-FD

coefficient of {Yi,n} generated by an SAR model, a threshold SAR model, and a spatial panel data

model. We also show how FD is employed to establish asymptotic distributions of estimators of

the SAR Tobit model and a dynamic network quantile regression model.

4.1. A General Criterion

First, we provide a general criterion to establish the Lp-FD property. Let X = {Xi,n, i ∈ Dn, n ≥

1} be an RpX -valued triangular array random field and denote Xn ≡
((

X ′
i,n

)
i∈Dn

)′
. Suppose

{Yi,n, i ∈ Dn, n ≥ 1} is generated by7

Yi,n = hi,n (Xn) , (4.1)
7When Xi,n’s are independent, representation (4.1) is identical to (2.1). However, representation (4.1) allows

Xi,n’s to be dependent, more specifically, allows {Xi,n = Xi,n(un)} to be generated by an independent random field
{ui,n}. In this case, hi,n(Xn(·)) can be regarded as gi,n(·) in (2.1).
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where hi,n : (RpX )n → RpY satisfies the following condition: for all x, x• ∈ (RpX )n,

∥hi,n (x)− hi,n (x
•)∥ ≤

∑
j∈Dn

mij,n

∥∥xj − x•j
∥∥ , (4.2)

where xj is the jth component of x. Denote ϕ (s) ≡ supn,i∈Dn

∑
j∈Dn:dij≥smij,n.

Proposition 4.1. If (i) lims→∞ ϕ (s) = 0, (ii) Xi,n’s are independent, and (iii) ∥X∥Lp = supn,i∈Dn
∥Xi,n∥Lp <

∞ for some p ≥ 1, then (i) for all i, j ∈ Dn, δp(i, j, n) ≤ 2 ∥X∥Lp mij,n, and (ii) {Yi,n} is Lp-FD

on {Xi,n} with the Lp-FD coefficient ∆p (s) satisfying ∆p (s) ≤ 2 ∥X∥Lp ϕ (s) for all s ∈ [0,∞).

When Xi,n’s are dependent, we assume they are generated by another latent independent ran-

dom field {ui,n : i ∈ Dn, n ≥ 1}, and the Lp-FD property of {Yi,n} is more complicated than that

in Proposition 4.1. The result is presented in Proposition 4.2.

Proposition 4.2. If (i) lims→∞ ϕ (s) = 0 and ϕ (0) = supn,i∈Dn

∑
j∈Dn

mij,n < ∞, (ii) for some

p ≥ 1, {Xi,n} is Lp-FD on an independent random field {ui,n} with the FDM δX,p(i, I, n) and

the Lp-FD coefficient ∆X,p (s) satisfying lims→∞∆X,p (s) = 0 and ∆X,p(0) < ∞, then (i) for all

i, k ∈ Dn, the FDM of {Yi,n} on {ui,n} satisfies δp (i, k, n) ≤
∑

j∈Dn
mij,nδX,p(j, k, n), and (ii) the

Lp-FD coefficient ∆p (s) satisfies ∆p (s) ≤ 3∆X,p(0)ϕ (s̃) + 3ϕ (0)∆X,p (s− s̃) for all s ∈ [0,∞)

and s̃ ∈ [0, s]. In particular, ∆p (s) ≤ 3∆X,p(0)ϕ
(
s
2

)
+ 3ϕ(0)∆X,p

(
s
2

)
.

We note that the conditions onmij,n for Lp-FD and L2-NED (Proposition 1 in Jenish and Prucha,

2012) are almost identical. However, here the p ≥ 1 can be an arbitrary number; Proposition 1 in

Jenish and Prucha (2012) is applicable only to p = 2. With more choices for p, FD is more flexible

and more convenient than NED in applications.

4.2. Spatial Autoregressive Models

In this subsection, we calculate the FDM and the Lp-FD coefficient for the SAR models. The

individuals 1, 2, . . . , n are located in some lattice Dn ⊂ Rd satisfying Assumption 1, and we identify

each individual with its location in Rd for simplicity.
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4.2.1. SAR model

The SAR model can be written as
Y1,n
...

Yn,n

 = Yn = F (λWnYn +Xnβ + ϵn) =


F
(
λW1·,nYn +X ′

1,nβ + ϵ1,n
)

...

F
(
λWn·,nYn +X ′

n,nβ + ϵn,n
)
 , (4.3)

where Wn = (wij,n)n×n is a nonstochastic and nonzero spatial weights matrix, Wi·,n is the ith

row of Wn, F : R → R is a Borel-measurable function, F (a) ≡ (F (a1), . . . , F (an))
′ for any col-

umn vector a = (a1, . . . , an)
′ ∈ Rn, λ ∈ R and β ∈ RK are true model parameters, Xn =

(X1,n, X2,n, . . . , Xn,n)
′ ∈ Rn×K is the exogenous variable matrix, and ϵn = (ϵ1,n, ϵ2,n, . . . , ϵn,n)

′ ∈

Rn is the disturbance term. The SAR model and its variants have been widely used in applications.

When F (x) = x, (4.3) becomes Yn = λWnYn+Xnβ+ϵn, which is the standard (linear) SAR model;

when F (x) = max (0, x), (4.3) becomes the SAR Tobit model studied in Xu and Lee (2015a).

We employ Propositions 4.1 and 4.2 to show that the {Yi,n} generated by (4.3) is FD under

some weak conditions. To do so, we need to impose some assumptions on the function F , the

spatial weights matrix Wn, {Xi,n}, and {ϵi,n}.

Assumption 2. F is a Lipschitz function with the Lipschitz constant L > 0, i.e., for any e, e• ∈ R,

|F (e•)− F (e)| ≤ L |e• − e|. And ζ ≡ L |λ| supn ∥Wn∥∞ < 1.

Assumption 2 is a generalization of Assumption 2 in Xu and Lee (2015a) and Assumption 3

in Xu and Lee (2015b). It ensures the existence and uniqueness of the solution of (4.3). See

Xu and Lee (2015a) for more discussion about it.

Assumption 3. The weights wij,n’s in Wn satisfy one of the following conditions:

(1) Only individuals whose distances are less than some specific constant d̄0 > 1 may affect each

other directly, i.e., wij,n can be nonzero only if dij < d̄0;
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(2) |wij,n| ≤ cd−α
ij for some constants c > 0 and α > d.

Assumption 3 is intuitive. From our definition, FD property implies that when the distance dij

is large, ϵi,n has a negligible impact on Yj,n. In the SAR model, wij,n represents the direct impact

of Yj,n on Yi,n. Thus, intuitively, for an FD SAR process, |wij,n| should decrease as dij increases.

Assumption 3(1) implies that there is a threshold distance d̄0 such that when dij ≥ d̄0, wij,n will

be zero. Assumption 3(2) allows wij,n to decrease as a power function of the distance dij . In fact,

we relax Assumption 3(2) in Xu and Lee (2015a) which requires the number of spatial units with

strong impacts to be uniformly bounded. And if we impose a faster decreasing rate on wij,n, e.g.,

|wij,n| ≤ c exp (−αdij), we can obtain a stronger conclusion.

Assumption 4. One of the following conditions is satisfied:

(1) (X ′
i,n, ϵi,n)’s are independent over i;

(2) for some p ≥ 1,
{(

X ′
i,n, ϵi,n

)′
: i ∈ Dn, n ≥ 1

}
is Lp-FD on an independent random field

u = {ui,n : i ∈ Dn, n ≥ 1} with the spatial FDM δXϵ,p(i, I, n) and the Lp-FD coefficient

∆Xϵ,p (s) satisfying lims→∞∆Xϵ,p (s) = 0 and ∆Xϵ,p (0) <∞.

Assumption 4 considers two cases: (1) (X ′
i,n, ϵi,n)’s are independent, and (2) they are spatially

dependent. In both cases, we do not require that Xi,n and ϵi,n be independent. So, conditional

heteroskedasticity is allowed. When (X ′
i,n, ϵi,n)’s are spatially dependent, we suppose that they

are generated by some independent underlying random vectors ui,n’s. Similar ideas are widely

employed. For example, in time series, we usually model a dependent process as a moving average

process. Since Assumption 4(2) allows ϵi,n’s to be dependent, the SAR model with an SAR dis-

turbance (called the SARAR model) is a special case of (4.3), and we discuss it in Section 4.2.2.

Moreover, Assumption 4(2) allows contextual effects. If {Xi,n} is Lp-FD on some independent

random field {ui,n}, by Proposition 4.2, {Wi·,nXn} is also Lp-FD on {ui,n} under some reasonable

conditions. Thus, Assumption 4(2) allows {Wi·,nXn} as a special term.
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We recall that L is the Lipschitz constant of F (·). To present our main results, denote

Mn ≡ (mij,n)n×n ≡ L (In − L |λ| |Wn|)−1 ,

where |Wn| ≡ (|wij,n|)n×n. Under Assumption 2, Mn is well-defined and Neumann’s expansion is

allowed.

Proposition 4.3. We assume Cxϵ,p ≡ supn,i

∥∥∥X ′
i,nβ + ϵi,n

∥∥∥
Lp

< ∞, where p is the same as that

in Assumption 4. Let δp(i, j, n) and ∆p (s) denote the FDM and the Lp-FD coefficient of {Yi,n},

respectively.

(1) Under Assumption 2, {Yi,n} is uniformly Lp-bounded.

(2) (i) Under Assumptions 2 and 4(1), δp(i, j, n) ≤ 2Cxϵ,pmij,n for all i, j ∈ Dn.

(ii) Under Assumptions 2 and 4(2), δp (i, k, n) ≤
∑n

j=1(∥β∥ + 1)mij,nδXϵ,p(j, k, n) for all

i, k ∈ Dn.

(3) Under Assumptions 1, 2, 3(1), and 4(1), {Yi,n} is Lp-FD on
{(

X ′
i,n, ϵi,n

)′}
and ∆p (s) ≤

2Cxϵ,pϕ(s) for all s ∈ [0,∞), where ϕ (s) ≤ L
1−ζ ζ

s/d̄0 and ζ is defined in Assumption 2.

(4) Under Assumptions 1, 2, 3(2), and 4(1), {Yi,n} is Lp-FD on
{(

X ′
i,n, ϵi,n

)′}
and ∆p (s) ≤

2Cxϵ,pϕ (s) for all s ∈ [0,∞), where ϕ (s) = O
(
s−(α−d) (log s)α−d

)
does not depend on p.

(5) Under Assumptions 1, 2, 3(1), and 4(2), {Yi,n} is Lp-FD on {ui,n} and

∆p(s) ≤ 3 (∥β∥+ 1)∆Xϵ,p(0)ϕ
(s
2

)
+ 3 (∥β∥+ 1)ϕ (0)∆Xϵ,p

(s
2

)

for all s ∈ [0,∞), where ϕ (s) = L
1−ζ ζ

s/d̄0. In particular, as s→ ∞,

(i) if ∆Xϵ,p (s) = O (s−α1) for some α1 > 0, then ∆p (s) = O (s−α1);

(ii) if ∆Xϵ,p (s) = O (ηs) for some 0 < η < 1, then ∆p (s) = O (ξs), where ξ = max
(
η1/2, ζ1/(2d̄0)

)
.
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(6) Under Assumptions 1, 2, 3(2), and 4(2), {Yi,n} is Lp-FD on the random field {ui,n} and

∆p(s) ≤ 3 (∥β∥+ 1)∆Xϵ,p(0)ϕ
(s
2

)
+ 3 (∥β∥+ 1)ϕ (0)∆Xϵ,p

(s
2

)

for all s ∈ [0,∞), where ϕ (s) = O
(
s−(α−d) (log s)α−d

)
does not depend on p. In particular,

as s→ ∞, if ∆Xϵ,p (s) = O
(
s−(α−d) (log s)α−d

)
, then ∆p (s) = O

(
s−(α−d) (log s)α−d

)
.

From Proposition 4.3, under certain conditions, the {Yi,n} generated by the SAR model is Lp-

FD. In Section S.2, we apply Proposition 4.3 to show that the score function of the SAR Tobit

model studied in Xu and Lee (2015a) satisfies a CLT, and this is a critical step in establishing the

asymptotic distribution of their estimator.

4.2.2. SARAR model

The SARAR model is a generalization of the SAR model and is widely used in applications. Thus,

we explore its functional dependence properties. The form of the SARAR model is the same as

(4.3), but ϵn = ρMnϵn + vn, where vn = (v1,n, . . . , vn,n)
′, vi,n’s are i.i.d. random variables, and

Mn = (mij,n)n×n is a nonstochastic and nonzero spatial weights matrix. As mentioned previously,

the SARAR model is just a special case of the previous SAR model in our setting. Thus, we can

employ Proposition 4.3 to establish the Lp-FD property of the SARAR model by imposing some

conditions on Mn to ensure that {ϵi,n} is Lp-FD on {vi,n}.

Assumption 5. (1) The Lipschitz constant of F : R → R is L, and ζ ≡ L |λ| supn ∥Wn∥∞ < 1;

(2) |wij,n| ≤ cd−α
ij and |mij,n| ≤ cd−α

ij for some constants c > 0 and α > d;

(3) for some p ≥ 1, {Xi,n} is Lp-FD on an independent random field {ui,n : i ∈ Dn, n ≥ 1}

with the Lp-FD coefficient ∆X,p (s) = O
(
s−(α−d) (log s)α−d

)
satisfying ∆X,p (0) < ∞; and(

u′i,n, vi,n

)
’s are independent over i;

(4) supn ∥ρMn∥∞ < 1;
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(5) ∥v∥Lp = supn,i ∥vi,n∥Lp <∞, ∥X∥Lp = supn,i

∥∥∥X ′
i,nβ

∥∥∥
Lp
<∞.

Assumption 5 inherits the assumptions of Proposition 4.3(6) directly. Consequently, the Lp-FD

coefficient of {Yi,n} is a direct result of Proposition 4.3(6).

Proposition 4.4. Under Assumptions 1 and 5, {Yi,n} is Lp-FD on
{(

u′i,n, vi,n

)′}
with the Lp-FD

coefficient ∆p (s) = O
(
s−(α−d) (log s)α−d

)
as s→ ∞.

4.2.3. SARMA model

The SAR model with moving average disturbances (SARMA model) is another generalization of

SAR model (Doğan and Taşp1nar, 2013; Fingleton, 2008; Huang, 1984). The form of the SARMA

model is the same as (4.3), except that ϵn = vn − ρMnvn, where vn = (v1,n, . . . , vn,n)
′, vi,n’s

are i.i.d. random variables, and Mn = (mij,n)n×n is a nonstochastic and nonzero spatial weights

matrix. Here are the assumptions needed to establish the FD properties of the SARMA model.

Assumption 6. (1) The Lipschitz constant of F : R → R is L, and ζ ≡ L |λ| supn ∥Wn∥∞ < 1;

(2) |wij,n| ≤ cd−α
ij and |mij,n| ≤ cd−α

ij for some constants c > 0 and α > d;

(3) for some p ≥ 1, {Xi,n} is Lp-FD on an independent random field {ui,n : i ∈ Dn, n ≥ 1} with

the Lp-FD coefficient ∆X,p (s) satisfying ∆X,p (s) = O
(
s−(α−d) (log s)α−d

)
as s → ∞ and

∆X,p (0) <∞; and
(
u′i,n, vi,n

)
’s are independent over i;

(4) ∥v∥Lp = supn,i ∥vi,n∥Lp <∞ and ∥X∥Lp = supn,i

∥∥∥X ′
i,nβ

∥∥∥
Lp
<∞.

Like the SARAR model, Assumption 6 also inherits the assumptions of Proposition 4.3(6).

Thus the Lp-FD coefficient of {Yi,n} is a direct result of Proposition 4.3(6).

Proposition 4.5. Under Assumptions 1 and 6, {Yi,n} is Lp-FD on
{(

u′i,n, vi,n

)′}
with the Lp-FD

coefficient ∆p (s) = O
(
s−(α−d) (log s)α−d

)
as s→ ∞.
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4.3. A Threshold Spatial Autoregressive Model

A threshold spatial autoregressive (TSAR) model, which combines a threshold model and an SAR

model, has received increasing attention recently. Deng (2018) considers a TSAR model and pro-

poses a two-stage least squares estimator for the model. Li (2022) studies the quasi-maximum

likelihood estimation of a TSAR model. Here, we explore the functional dependence properties of

the TSAR model in Li (2022), which can be written as

Yn =
(
λ1Dγ + λ2D̄γ

)
WnYn +DγXnβ1 + D̄γXnβ2 + ϵn, (4.4)

where Yn = (Y1,n, . . . , Yn,n)
′, Dγ = diag {1(q1,n ≤ γ), . . . , 1(qn,n ≤ γ)}, D̄γ = In−Dγ , λ1, λ2, γ ∈ R

and β1, β2 ∈ RK are true model parameters, Xn = (X1,n, X2,n, . . . , Xn,n)
′ ∈ Rn×K are exoge-

nous variables, qi,n’s are the exogenous threshold variables which might be part of xi,n, ϵn =

(ϵ1,n, ϵ2,n, . . . , ϵn,n)
′ ∈ Rn is the disturbance term, and Wn = (wij,n)n×n is a nonstochastic and

nonzero spatial weights matrix. We first state some assumptions.

Assumption 7. (1) λ supn ∥Wn∥∞ < 1, where λ ≡ max {|λ1| , |λ2|};

(2) |wij,n| ≤ cd−α
ij for some constants c > 0 and α > d;

(3) qi,n’s are independent across i; for some p ≥ 1,
{(

X ′
i,n, ϵi,n

)′
: i ∈ Dn, n ≥ 1

}
is Lp-FD on

an independent random field u = {ui,n : i ∈ Dn, n ≥ 1} with the spatial FDM δXϵ,p(i, I, n)

and the Lp-FD coefficient ∆Xϵ,p (s) satisfying ∆Xϵ,p (s) = O
(
s−(α−d) (log s)α−d

)
as s → ∞

and ∆Xϵ,p (0) <∞;

(4) ∥ϵ∥Lp = supn,i ∥ϵi,n∥Lp <∞ and ∥X∥Lp = supn,i ∥Xi,n∥Lp <∞.

Proposition 4.6. Under Assumptions 1 and 7, the {Yi,n} generated by the model (4.4) is Lp-FD

on
{(

u′i,n, qi,n

)′}
with the Lp-FD coefficient ∆p (s) = O

(
s−(α−d) (log s)α−d

)
as s→ ∞.
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4.4. Spatial Panel Data Models

In this section, we discuss the functional dependence of spatial panel data models. We suppose that

in the panel data, there are N individuals named as 1, . . . , N and they are located in DN ⊂ Rd,

and the time periods originate from −∞: t = . . . ,−1, 0, 1, . . . , T . We regard each individual i

at time t as a point in the (d + 1)-dimensional spatial-temporal space Rd+1: (i, t) ∈ DNT ≡{
(i, t) ∈ Rd+1 : i ∈ DN , t = T, T − 1, . . .

}
. We adopt the same metric as in Qu et al. (2017):

dit;jτ ≡ ∥(i, t)− (j, τ)∥∞ = max {dij , |t− τ |} ≡ max

{
max
1≤k≤d

|ik − jk| , |t− τ |
}
.

We still consider the setting in Assumption 1, i.e., dij ≥ 1 for any i ̸= j. Consequently, for any

different pair (i, t) , (j, τ) ∈ DNT , dit;jτ ≥ 1.

We suppose that the fixed effects in the spatial panel data model are random, which includes

nonstochastic fixed effects as a special case. So, we employ the concept of conditional spatial FDM

here.8 Let (Ω,F ,P) be the underlying probability space and C be a sub-σ-field of F . We suppose

ϵit’s ((i, t) ∈ DNT ) are conditionally independent on C, and we write εNt ≡ (ϵ′1t, ϵ
′
2t, . . . , ϵ

′
Nt)

′.

We suppose yit’s ((i, t) ∈ DNT ) are generated by εNt’s: yit = git (εNt, εN,t−1, . . .). We write

YNt = (y1t, . . . , yNt)
′ and GNt = (g1t, . . . , gNt)

′. We can also write the system as

YNt =


g1t (εNt, εN,t−1, . . .)

...

gNt (εNt, εN,t−1, . . .)

 ≡ GNt (εNt, εN,t−1, . . .) . (4.5)

For all (i, t) ∈ DNT , given C, let ϵ∗it be an i.i.d. copy of ϵit, and ϵ∗it is independent of ϵjτ for all

(j, τ) ∈ DNT . For any set I ⊂ DNT , we define ϵit,I ≡ ϵ∗it if (i, t) ∈ I and ϵit,I ≡ ϵit otherwise, and

εNt,I ≡
(
ϵ′1t,I , ϵ

′
2t,I , . . . , ϵ

′
Nt,I

)′
. Then yit,I = git (εNt,I , εN,t−1,I , . . .) is a coupled version of yit on

I and YNt,I = (y1t,I , . . . , yNt,I)
′. Although the notation for spatial panel data is slightly different

8See Appendix D for details about the conditional spatial functional dependence.
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from that in Section 2, e.g., DNT here corresponds to Dn in Section 2, the setting in the spatial

panel data is a special case of the general setting in Section 2. For clarity, we restate Definitions

2.1 and 2.2 in the spatial panel data setting.

Definition 4.1 (The FDM for spatial panel data). For p ≥ 1, (i, t) ∈ DNT and I ⊂ DNT , define

the conditional functional dependence measure as δCp (it, I) ≡ ∥yit − yit,I∥Lp,C. When I = {(j, τ)}

is a singleton, we simplify the notation as δCp (it, {(j, τ)}) ≡ δCp (it, jτ).

Definition 4.2 (The Lp-FD coefficient for spatial panel data). Let p ≥ 1. For the system in (4.5),

{yit} is said to be C-conditionally Lp-functionally dependent (Lp-FD) or C-conditionally p-stable

on {ϵit} if the C-conditional Lp-functional dependence (Lp-FD) coefficient satisfies

∆C
p(s) ≡ sup

N,T
sup

(i,t)∈DNT

δCp (it, {(j, τ) ∈ DNT : dit;jτ ≥ s}) → 0 as s→ ∞. (4.6)

4.4.1. A general SDPD model

Next, we study the functional dependence properties of the spatial dynamic panel data (SDPD)

model, which has been widely investigated in the literature. See, e.g., Yu et al. (2008) and

Lee and Yu (2010), among many others. The SDPD model is specified as

YNt = λWNYNt + γYN,t−1 + ρWNYN,t−1 +XNtβ + µtlN + νN + VNt, (4.7)

where t = T, T−1, . . . , i = 1, . . . , N , YNt = (y1t, y2t, . . . , yNt)
′, WN = (wij,N )N×N is a nonstochastic

spatial weights matrix and invariant as t changes, XNt = (x1t, . . . , xNt)
′ ∈ RN×p is the regressor

matrix, µt is the time fixed effect at period t, lN = (1, . . . , 1)′ is N -dimensional, νN = (ν1, . . . , νN )′

is an N × 1 column vector of individual fixed effects, VNt = (v1t, . . . , vNt)
′ is the disturbance term,

and λ, γ, ρ, β ∈ R are true model parameters. Denote SN ≡ IN − λWN , AN ≡ S−1
N (γIN + ρWN ),

εNt ≡ XNtβ + µtlN + νN + VNt and εNt ≡ (ϵ1t, . . . , ϵNt)
′. Then (4.7) can be written as YNt =
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ANYN,t−1 + S−1
N εNt. Under some suitable conditions, by iterating the above equation, we have

YNt =
∞∑
h=0

Ah
NS

−1
N εN,t−h. (4.8)

For this example, we define C ≡ ∨∞
t=−∞∨∞

N=1 σ(µt,νN ) as the sub-σ-field generated by all fixed

effects. To obtain the conditional Lp-FD coefficient for the SDPD model, the following assumptions

are needed.

Assumption 8. |wij,N | ≤ cd−α
ij for some constants c > 0 and α > d.

Assumption 9. supN ∥WN∥∞ ≤ 1 and |λ|+ |γ|+ |ρ| < 1. Denote ζ ≡ |γ|+|ρ|
1−|λ| < 1.

Assumption 10. ∥ϵ∥Lp,C ≡ supN,T supi,t ∥ϵit∥Lp,C <∞ a.s. for some p ≥ 1.

Assumption 11. Conditional on C, (x′it, vit)’s are independent over i and t.

These assumptions are like those for the SAR model, but all the statements here are conditional

on C.

Proposition 4.7. For model (4.7), under Assumptions 1 and 8-11, (1) {yit : (i, t) ∈ DNT } is C-

conditionally Lp-FD on {ϵit} with the C-conditional Lp-FD coefficient ∆C
p (s) = ∥ϵ∥Lp,C O

(
s−(α−d) (log s)α−d

)
almost surely as s→ ∞; (2) the same conclusion also holds for {Wi·,NYNt : (i, t) ∈ DNT }.

Remark 4.1. In Proposition 4.7, we require xit’s and vit’s to be conditionally independent on

C. In Section S.8.4 in the online supplement, we provide an example where vit’s are correlated.

Our conclusion can also be generalized to allow xit’s to be correlated in both the spatial and time

dimension. For instance, we consider XNt =
∑∞

τ=0Dτ X̃N,t−τ , where the px×1 random vectors x̃it’s

(the transpose of the ith row of X̃Nt) are identically distributed and conditionally independent on

C over i and t, Dτ is an N ×N nonstochastic matrix whose row-sum-norm decreases exponentially

as τ → ∞, i.e., ∥Dτ∥∞ ≤ C0 exp(−C1τ) for some constants C0, C1 > 0 and supi
∑

j:dij≥s(Dτ )ij =
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O
(
s−(α−d) (log s)α−d

)
for any τ ≥ 0, where (Dτ )ij is the (i, j)th entry of Dτ . Then

∞∑
h=0

Ah
NS

−1
N XN,t−hβ =

∞∑
h=0

Ah
NS

−1
N

( ∞∑
τ=0

Dτ X̃N,t−h−τ

)
β =

∞∑
k=0

(
k∑

τ=0

Ak−τ
N S−1

N Dτ

)
X̃N,t−kβ.

From the proof of Lemma A.8 in Su et al. (2023),
∥∥∥∑k

τ=0A
k−τ
N S−1

N Dτ

∥∥∥
∞

decreases exponentially

as k → ∞. This fact can be used to replace the fact that
∥∥Ah

NS
−1
N

∥∥
∞ decreases exponentially as

h→ ∞ in the proof of Proposition 4.7. Further, by (1) replacing t1 − t2 ≥ s and 0 ≤ t1 − t2 < s in

the last inequality of (S.37) by t1 − t2 ≥ s̃ and 0 ≤ t1 − t2 < s̃ respectively, where s̃ depends on s

and s̃ ≤ s, and (2) selecting s̃ appropriately, we can show that {yit : (i, t) ∈ DNT } is C-conditionally

Lp-FD on
{
(x̃′it, vit)

′} with the C-conditional Lp-FD coefficient ∆C
p (s) = O

(
s−(α−d) (log s)α−d+1

)
a.s. as s→ ∞.

Remark 4.2. We can allow the slope coefficients of different individuals to be different, as long as

their upper bounds satisfy Assumption 9. For example, we denote the spatial coefficient for the

ith row of WNYNt by λi, λ ≡ supN∈N supi=1,...,N |λi|, and ΛN ≡ diag{λ1, . . . , λN}. Then

ΛNWN = λdiag
{
λ1
λ
, . . . ,

λN
λ

}
WN ≡ λW̌N .

where W̌N ≡ diag
{

λ1
λ , . . . ,

λN
λ

}
WN can be regarded as the new spatial weights matrix. Then

Proposition 4.7 remains applicable.

4.4.2. A DNQR model

Next, we give an example to illustrate how functional dependence is used to derive a CLT, which is

an important step in deriving the asymptotic distribution of the estimator for the dynamic network
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quantile regression (DNQR) model in Xu et al. (2022). Their model can be specified as9

YNt = γ1τWNYNt + γτ2WNYN,t−1 + γτ3YN,t−1 + γ0τ lN + ZNtατ + lNB
′
τFt + VNt, (4.9)

where t = T, T−1, . . . , i = 1, . . . , N , YNt = (y1t, y2t, . . . , yNt)
′, WN = (wij,N )N×N is a nonstochastic

time-invariant spatial weights matrix, ZNt = (z1t, . . . , zNt)
′ ∈ RN×pz is the exogenous regressor

matrix, γ0τ is the intercept term, lN = (1, . . . , 1)′ is N -dimensional, ft = (ft1, . . . , ftm)′ ∈ Rm×1 is a

vector of time-varying common factors and Ft =
(
f ′t , . . . , f

′
t−k

)′ ∈ R(k+1)m×1, VNt = (v1t, . . . , vNt)
′

is the disturbance term and vit’s are independent, and γ0τ , γ1τ , γ2τ , γ3τ ∈ R, ατ ∈ Rpz , and Bτ =

(β′0τ , . . . , β
′
kτ )

′ ∈ R(k+1)m×1 are true model parameters. We write xit = (1, z′i,t, Y i,t−1, Yi,t−1, F
′
t)

′

and ϕτ = (γ0τ , α
′
τ , γτ2, γτ3, B

′
τ )

′, where Y i,t−1 = Wi·,NYN,t−1. We take the instrumental variable

as rit = (e′iW
2
NYN,t−1, e

′
iW

3
NYN,t−1)

′ ∈ R2, where ei ∈ RN is a column vector with unity on the ith

entry and zeros otherwise. We write Ψit ≡ (x′it, r
′
it)

′, uit ≡ yit−γ1τY it−x′itϕτ and sit ≡ ψτ (uit)·Ψit,

where Y it ≡ Wi·,NYNt and ψτ (·) ≡ τ − 1(· ≤ 0). In Xu et al. (2022), they explore the asymptotic

theory for the instrumental variable quantile regression (IVQR) estimator by establishing the NED

property of {yit}. Here, we establish the CLT for {sit}, a crucial step in establishing the asymptotic

normality of the IVQR estimator by using FD.

Assumption 12. Let C ≡ ∨∞
t=−∞σ(z

′
1t, . . . z

′
Nt, F

′
t).

(1) supN ∥WN∥∞ = 1 and |γ1τ |+ |γ2τ |+ |γ3τ | < 1. We write ζ ≡ |γ2τ |+|γ3τ |
1−|γ1τ | < 1.

(2) ∥v∥Lp,C ≡ supN,T,i,t ∥vit∥Lp,C < ∞ a.s. for some p > 2; |γ0τ | + supN,T,i,t |z′itατ | ≤ dz < ∞;

and ∥Bτ∥∞ supT,t ∥Ft∥1 ≤ df <∞.

(3) |wij,N | ≤ cd−α
ij for some constants c > 0 and α > 3

2d+
1
2 .

(4) Conditional on C, vit’s are independent over i and t.

(5) Ω ≡ τ(1− τ) limN,T→∞ (NT )−1∑N
i=1

∑T
t=1 E (ΨitΨ

′
it | C) is nonsingular a.s.

9Here, we use a slightly different form, but it is equivalent to the one in Xu et al. (2022).
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(6) P (vit ≤ 0 | C, xit, rit) = τ a.s.

Assumptions 12(1)-(4) directly inherit Assumptions 8-11. Similar assumptions as those in

Assumption 12 are also employed in Assumptions 2.1 and 3.2 and Theorem 3 in Xu et al. (2022).

Xu et al. (2022) require α > 2d + 1 in Assumption 12(3) to establish NED, so our assumption is

less restrictive. Then we have the following CLT.

Proposition 4.8. For model (4.9), let GNT =
∑T

t=1

∑N
i=1 sit. Under Assumptions 1 and 12,

Ω−1/2GNT − ECGNT√
NT

d→ N(0, I).

To conduct inference, one must estimate Ω consistently. A natural estimator is

Ω̂ =
τ(1− τ)

NT

N∑
i=1

T∑
t=1

ΨitΨ
′
it,

and it is a consistent estimator for Ω by the conditional LLN under functional dependence (Theorem

D.1).

Proposition 4.9. For model (4.9), under Assumptions 1 and 12, Ω̂ p→ Ω.

Remark. Though the spatial weights matrices (Wn orWN ) considered in this section are nonstochas-

tic, our theory can also accommodate stochastic matrices. In Section S.8 in the online supplement,

we discuss the spatial FD properties of more examples, including the models with a stochastic (or

even possibly endogenous) spatial weights matrix. All the examples in this section and Section

S.8 share a similar structure: the right hand sides of these data generating processes (e.g., (4.3),

(4.4), and (4.7)) are all Lipschitz functions of the spatial interaction term (WnYn or WNYNt) and

the right-hand-side function is a contraction mapping of Yn or YNt, which is preserved under our

assumptions (e.g., Assumption 2). The Lipschitz and contraction mapping properties are vital for

condition (4.2) to hold such that the general criteria (Propositions 4.1 and 4.2) are applicable to

establish the spatial FD property. When the Lipschitz and contraction mapping properties do not
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hold, e.g., the right hand side is an indicator function (when Yi,n is discrete), the general criteria

are not applicable and we have to resort to other methods to establish the spatial FD property of

Yi,n. Finally, the establishment of the FD property does not require the coefficients in the models

to be homogeneous (i.e., identical for all individuals). We allow for individual heterogeneity in

the models (e.g., the functional-coefficient SAR model in Sun (2016), the smooth-coefficient SAR

model in Malikov and Sun (2017) and the heterogeneous SDPD model in Su et al. (2023)). See

Section S.8 in the online supplement for more information.

5. Transformations of Spatial Stable Processes

In this section, we investigate the FDM and the FD coefficient under various transformations. In

applications, estimators and testing statistics are certain functions of the data. Thus, one needs to

calculate the FD coefficients of those estimators and testing statistics to employ the tools in Section

3. Since ∆p(s) ≡ supn supi∈Dn
δp (i, {j ∈ Dn : dij ≥ s} , n), it suffices to consider the properties of

Lp-FDM δp(i, I, n) under various transformations.10 Throughout this section, denote the Lp-FDM

(p ≥ 1) of the random field {Yi,n} ({Zi,n} or {Xi,n}) over an independent random field {ϵi,n} by

δY,p(i, I, n) (δZ,p(i, I, n) or δX,p(i, I, n)).

First, we consider a family of functions Hi,n : RpY → RpZ satisfying the following condition:

for all y, y• ∈ RpY ,

∥Hi,n (y)−Hi,n (y
•)∥ ≤ Bi,n (y, y

•) ∥y − y•∥ . (5.1)

We write Zi,n ≡ Hi,n (Yi,n) in Propositions 5.1-5.3. When Bi,n is bounded by a constant C, from

the following proposition, we have δZ,p(i, I, n) ≤ CδY,p(i, I, n). And NED shares a similar property.

Proposition 5.1. If supn,i supy,y• Bi,n (y, y
•) ≤ C < ∞ in (5.1) for some constant C, then

δZ,p (i, I, n) ≤ CδY,p (i, I, n) for any p ≥ 1, i ∈ Dn, I ⊂ Dn, n ≥ 1.
10The θm,p,ι defined in Appendix B is also a special case of δp(i, I, n) with I = Ii,m,ι. Thus, the properties of

FDM δp(i, I, n) under transformations are also applicable for θm,p,ι.
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When Bi,n (y, y
•) is unbounded, e.g., Hi,n (x) = x2, the following two propositions summarize

the corresponding results.

Proposition 5.2. We suppose Bi,n (y, y
•) ≤ C1 (∥y∥a + ∥y•∥a + 1) in (5.1) for some constants a >

0 and C1 <∞. The constants p, q, r ≥ 1 satisfy p−1 = q−1+r−1. If ∥Y ∥Lar ≡ supn,i∈Dn
∥Yi,n∥Lar <

∞, then δZ,p (i, I, n) ≤ C1 (2 ∥Y ∥aLar + 1) δY,q (i, I, n) for all i ∈ Dn, I ⊂ Dn, and n ≥ 1.

We note that there is a trade-off between p, q, and r. If we want a larger p, then a larger q or a

larger r is needed. In the NED case (Lemma A.4, Xu and Lee, 2015a), p is restricted to be 2, but

here p can be any number greater than or equal to 1. In Proposition 5.2, the Lp-FD of {Zi,n} is

preserved by the Lq-FD of {Yi,n} for some q > p. In fact, when {Yi,n} is Lp-FD, {Zi,n} might also

be Lp-FD, as can be seen in the following proposition.

Proposition 5.3. We suppose Bi,n (y, y
•) ≤ C1 (∥y∥a + ∥y•∥a + 1) in (5.1) for some constants

a ≥ 1 and C1 < ∞, and ∥Y ∥Lq ≡ supn,i∈Dn
∥Yi,n∥Lq < ∞ for some q satisfying q > (a + 1)p and

q ≥ ap
p−1 , where p > 1 is a constant. Then for any i ∈ Dn and I ⊂ Dn, there exists a constant

C2 > 011 such that

δZ,p (i, I, n) ≤ C2 {δY,p (i, I, n)}(q−ap−p)/(pq−ap−p) . (5.2)

Let us compare Propositions 5.2 and 5.3. Suppose that we want to establish a CLT for {Zi,n}.

If we employ Proposition 5.2, by Theorem 3.5, we need ∆Y,q (s) = O(s−d/2) for some q > 2. If

instead we employ Proposition 5.3, we need ∆Y,2 (s) = O(s−κ) for some κ > d(pq−ap−p)
2(q−ap−p) as s→ ∞.

Since pq−ap−p
q−ap−p > 1, we require a faster decreasing rate of ∆Y,2 (s) than that of ∆Y,q (s) when we use

Proposition 5.2. The price to employ Proposition 5.2 is a higher order FD coefficient, i.e, q > 2.

Next, we consider a discontinuous nonlinear transformation, 1 (· > 0), which is widely used to

study binary data and censored data.

11Here, C2 might depend on p. If one wants to establish an exponential inequality for Zi,n, one must refer to the
proof of this proposition to determine how C2 depends on p. This is also the case for Proposition 5.7.
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Proposition 5.4. We write Zi,n ≡ 1 (Yi,n > 0) and suppose the probability density functions of

{Yi,n} are uniformly bounded in i and n. Then, for any p ≥ 1, i ∈ Dn, and I ⊂ Dn, there exists a

constant C > 0 not depending on p, i, I, or n, such that

δZ,p (i, I, n) ≤ C {δY,p (i, I, n)}1/(p+1) .

We suppose Yi,n and Zi,n are real-valued in the following. In applications, one usually needs to

deal with the summation or product of Yi,n and Zi,n. The case of summation is a direct result of

Minkowski’s inequality, and thus we omit its proof.

Proposition 5.5. The Lp-FDM of {Yi,n + Zi,n} satisfies δY+Z,p (i, I, n) ≤ δY,p (i, I, n)+δZ,p (i, I, n)

for any i ∈ Dn and I ⊂ Dn and p ≥ 1.

The case of product is more complicated. Like Propositions 5.2-5.3, we also have two results.

We write Xi,n ≡ Yi,nZi,n in the following two propositions.

Proposition 5.6. We suppose {Yi,n ∈ R} and {Zi,n ∈ R} are two random fields on the independent

random field {ϵi,n} with ∥Y ∥Lr2 = supn,i ∥Yi,n∥Lr2 <∞ and ∥Z∥Lr1 = supn,i ∥Zi,n∥Lr1 <∞, where

r1, r2 > 1. Let p, q1, q2 > 1 be constants and p−1 = q−1
1 + r−1

1 = q−1
2 + r−1

2 . Then, the FDM of

{Xi,n} on {ϵi,n} satisfies δX,p (i, I, n) ≤ ∥Z∥Lr1 δY,q1 (i, I, n) + ∥Y ∥Lr2 δZ,q2 (i, I, n) for any i ∈ Dn

and I ⊂ Dn.

As Proposition 5.2, Proposition 5.6 employs higher order FDMs to calculate Lp-FDM, i.e., q1

and q2 are both greater than p. We can avoid higher order FDMs with the help of the following

proposition. But the price is that the decay rate of the Lp-FDM is slower.

Proposition 5.7. We suppose supn,i ∥Yi,n∥Lq <∞ and supn,i ∥Zi,n∥Lq <∞ for some q satisfying

q > 2p and q ≥ p
p−1 , where p > 1 is a constant. Then, for any i ∈ Dn and I ⊂ Dn, there exist

constants C1, C2 > 0 such that

δX,p (i, I, n) ≤ C1 {δY,p (i, I, n)}(q−2p)/(pq−2p) + C2 {δZ,p (i, I, n)}(q−2p)/(pq−2p) .
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In practice, we can use either Proposition 5.6 or 5.7 depending on different conditions. An

advantage of Proposition 5.7 is that the p in the δp (i, I, n) coefficient of three or even more random

fields could be kept unchanged. However, since q−2p
pq−2p < 1, compared to using Proposition 5.6, we

need faster rates for δY,p (i, I, n) and δZ,p (i, I, n) (∆Y,p(s) and ∆Z,p(s)) to establish the inequalities

and limit theorems in Section 3 for {Xi,n} when we apply Proposition 5.7.

6. Comparison of Functional Dependence and NED

In this section, we compare spatial FD and spatial NED thoroughly. Spatial NED was proposed

by Jenish and Prucha (2012). For the convenience of reference, we review its definition first.

Definition. For some p ≥ 1, let Z = {Zi,n, i ∈ Dn, n ≥ 1} and ϵ = {ϵi,n, i ∈ Dn, n ≥ 1} be two

random fields with ∥Zi,n∥Lp < ∞, and Dn satisfies Assumption 1. The random field Z is said to

be uniformly Lp-NED on ϵ if ∥Zi,n − E(Zi,n|Fi,n (s))∥Lp ≤ Cψ (s) for some constant C and some

sequence ψ (s) ≥ 0 with lims→∞ ψ (s) = 0, where Fi,n(s) ≡ σ (ϵj,n : dij < s) denotes the sub-σ-field

generated by the ϵj,n’s located within the open ball centering at i ∈ Dn and of radius s. The C is

called the NED scaling factor. The ψ (s) is called the NED coefficient and can be without loss of

generality (w.l.o.g.) assumed to be nonincreasing.

The idea of NED is that if every spatial unit is mainly affected by its close neighbors, while

spatial functional dependence means that the effects of faraway spatial units are negligible. The

ideas of these two concepts are similar. Hence, it is natural to ask whether there is any relationship

between them. We answer this question in the following theorem.

Theorem 6.1. (1) If {Yi,n} is Lp-FD on an independent random field {ϵi,n}, i.e., lims→∞∆p(s) =

0, then {Yi,n} is uniformly Lp-NED on {ϵi,n} with the NED scaling factor C = 1 and the

NED coefficient ψ (s) ≤ ∆p (s).

(2) If {Yi,n} is Lp-NED on an independent random field {ϵi,n} with the NED scaling factor

C = 1, i.e., lims→∞ ψ (s) = 0, and in addition Yi,n =
∑

j∈Dn
wij,nϵj,n for any i ∈ Dn,
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where wij,n’s are nonstochastic coefficients, then {Yi,n} is Lp-FD on {ϵi,n} with the Lp-FD

coefficient ∆p (s) ≤ 2ψ (s).

Therefore, Lp-FD implies Lp-NED and they are equivalent when Yi,n is a linear process in

ϵj,n’s. Now, all properties of a NED random field on an independent random field {ϵi,n} also hold

for spatial functional dependent processes, e.g., the following covariance inequality. This implies

that |Cov (Yi,n, Yj,n)| decreases to 0 as dij increases to ∞. In other words, Yi,n is mainly correlated

with those Yj,n’s of close neighbors.

Corollary 6.1. Under Assumption 1, if (i) ∥Y ∥L2 ≡ supn,i ∥Yi,n∥L2 < ∞, and (ii) {Yi,n} is L2-

FD on an independent random field {ϵi,n}, i.e., lims→∞∆2(s) = 0, then for all i ̸= j ∈ Dn and

0 < s ≤ dij
2 , |Cov (Yi,n, Yj,n)| ≤ 2 ∥Y ∥L2 ∆2 (s).

Though FD implies NED when ϵi,n’s are independent, we note that FD is not only a special

case of NED, but a more powerful and convenient weak dependence concept. Here, we summarize

the advantages of FD over NED.

1. Spatial FD is more convenient to calculate than spatial NED, especially when we need to

deal with nonlinear transformations. When we need to deal with various nonlinear transfor-

mations, in many cases, only L2-NED is convenient. This is because the definition of NED

involves a conditional expectation, and the conditional expectation is the best predictor under

L2-distance. This property is widely used in the proofs about NED under nonlinear trans-

formations. See, e.g., Lemmas A.2 and A.4 in Xu and Lee (2015a). However, the conditional

expectation is not needed to calculate Lp-FDMs or Lp-FD coefficients. So, we can usually

obtain the Lp-FDM conveniently for any p ≥ 1 under suitable conditions; and the Lp-FD

property can be preserved under various transformations, as can be seen from Section 5.

2. As shown in Theorems 3.2 and 3.5, compared to using NED, it usually requires weaker

conditions to establish a CLT and an exponential inequality by using FDM. For CLT, it only
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requires the L2-FD coefficient to decrease slightly faster than s−d/2; however, it requires L2-

NED coefficient to decrease slightly faster than s−d. The exponential inequality under FDM

enjoys both less restrictive conditions and a faster decay rate, as discussed in Section 3.1.2.

3. Compared to NED, weaker conditions are needed to establish FD properties. For example, in

Case 1 of Assumption 3.2 in Xu et al. (2022), in addition to the condition that |wij | ≤ cd−α
ij ,

another condition about the column sums of Wn is needed, which is not needed in our paper

(see Assumption 12(3)).

Due to these reasons, we believe that spatial FDM is a more powerful and convenient weak depen-

dence concept than NED for theoretical studies in spatial econometrics.

7. Conclusion

In this paper, we generalize the concept of functional dependence proposed in Wu (2005) to the

spatial FD to fit the common settings in spatial econometrics. We establish a moment inequality,

an exponential inequality, a Nagaev-type inequality, a law of large numbers, and a central limit

theorem such that they can be employed in future studies in spatial econometrics. We verify the

concepts for a nonlinear SAR model, a threshold SAR model and an SDPD model. Furthermore,

we establish different conditions to preserve the spatial FD property under various transformations.

We compare spatial FD with the spatial NED proposed by Jenish and Prucha (2012), and illustrate

its advantages over the spatial NED.

There are some future research directions. (1) If a better strategy can be found to prove

Theorem B.1 such that the term ι
d/2
m in the definition of the second-type Lp-FD coefficient Θs,p,ι ≡∑∞

m=s ι
d/2
m θm,p,ι can be dropped, and some conditions in our theoretical results can be relaxed. (2)

We are working on relaxing the assumption that individuals are located in a Euclidean space such

that the FD theory can be applied to more general network data. (3) We are applying the tools

developed in this paper to study the quantile regression of spatial econometric models.
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Appendices

A. Two Lemmas for CLT

Lemma A.1. (CLT for spatially m-dependent triangular array). Let m ≥ 0 be fixed. {Xi,n, i ∈ Tn, n ≥ 1}

is a spatially m-dependent zero-mean triangular array (i.e., Xi,n and Xj,n are independent when

dij ≥ m), where Tn satisfies Assumption 1. And limk→∞ supn,i∈Tn
E[X2

i,n1(|Xi,n| > k)] = 0,

i.e., Xi,n’s are uniformly L2-integrable. Denote Sn ≡
∑

i∈Tn
Xi,n and σ2n ≡ Var (Sn). Assume

B ≡ lim infn→∞ |Tn|−1 σ2n > 0. Then
Sn
σn

d→ N (0, 1) .

Proof. Since {Xi,n, i ∈ Tn, n ≥ 1} is spatially m-dependent, its ϕ-mixing coefficients ϕ̄k,l(r) = 0

for all k, l ∈ N when r > m. Thus, Assumption 4 in Jenish and Prucha (2009) is satisfied.

Since Assumptions 1, 2 and 5 in Jenish and Prucha (2009) are also satisfied, by Theorem 1(b)

in Jenish and Prucha (2009), Sn
σn

d→ N (0, 1). ■

Lemma A.2. (Proposition 6.3.9 in Brockwell and Davis, 1991). Let Wn, n = 1, 2, . . . and Uns,

s = 1, 2, . . ., be random vectors such that (1) Uns
d→ Us as n → ∞ for each s = 1, 2, . . .; (2)

Us
d→ U as s → ∞; (3) lims→∞ lim supn→∞ P (|Wn − Uns| > ϵ) = 0 for every ϵ > 0. Then

Wn
d→ U as n→ ∞.

B. Second-type Functional Dependence Coefficient

In this section, we introduce the second-type Lp-functional dependence coefficient, which is mainly

used to develop our theory. In this paper, when we mention an Lp-FD coefficient without “second-

type”, we refer to the Lp-FD coefficient in Definition 2.2. To begin with, we define I ≡ {ι =

(ι0, ι1, . . .) : ι0 = 0, ιm > ιm−1, ιm ∈ N for all m ≥ 1} to be the set of all strictly increasing

integer-valued sequences ι starting at ι0 = 0. The proofs of this section are collected in Section S.3.
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Definition B.1 (The second-type Lp-functional dependence coefficient). For any p ≥ 1, m ∈ N,

and ι ∈ I , denote Ii,m,ι = {j ∈ Dn : dij ∈ [ιm−1, ιm)} and

θm,p,ι ≡ sup
n

sup
i∈Dn

δp (i, Ii,m,ι, n) = sup
n

sup
i∈Dn

∥∥Yi,n − Yi,n,Ii,m,ι

∥∥
Lp .

For any s ∈ N, the second-type Lp-functional dependence coefficient is defined as

Θs,p,ι ≡
∞∑

m=s

ιd/2m θm,p,ι,

and denote Θp,ι ≡ Θ1,p,ι =
∑∞

m=1 ι
d/2
m θm,p,ι.

In Definition B.1, Ii,m,ι is the set of individuals whose distance to i is within [ιm−1, ιm), which

can be regarded as a ring in Rd. Therefore, δp (i, Ii,m,ι, n) measures the impact of ϵj,n’s in this

ring on Yi,n, and θm,p,ι is its supremum over i and n. Θs,p,ι ≡
∑∞

m=s ι
d/2
m θm,p,ι is a weighted sum

of θm,p,ι with m ≥ s, measuring the total impact of ϵj,n’s with distance dij ≥ ιm−1. Thus, Θs,p,ι

decreases as the distance s increases.

Definition B.1 is motivated by Wu (2005), El Machkouri et al. (2013), Liu et al. (2013), and

Wu and Wu (2016). They define Θp ≡
∑∞

m=1 θm,p,ι̃, where ι̃ = (0, 1, 2, . . .). Their ι̃ is a special case

of ours. Using various ι’s, we can improve some of our theoretical results.12 Notice that they do

not have the term ι
d/2
m , but this term is essential to establish the moment inequality in our setup

(see the proof of Theorem B.1).

We now employ θm,p,ι and Θs,p,ι to establish a moment inequality and an exponential inequality,

which will lead to Theorems 3.1 and 3.2. To start with, we first give a crucial lemma.

Lemma B.1. For system (2.1), let Fi,n(s) ≡ σ (ϵj,n : dij < s) denote the sub-σ-field generated by

the ϵj,n’s located within the open ball centering at i ∈ Dn and of radius s. Denote Vi,n,ι (m) ≡
12We will elaborate on this at the end of this section.

37



E (Yi,n|Fi,n (ιm))− E (Yi,n|Fi,n (ιm−1)). Then for any i ∈ Dn, m ∈ N, p ≥ 1 and ι ∈ I , we have

∥Vi,n,ι(m)∥Lp ≤ θm,p,ι. (B.1)

In the following of this section, let Tn be a finite subset of Dn such that |Tn| → ∞ as n → ∞,

Sn ≡
∑

i∈Tn
Yi,n and Zn ≡ Sn/

√
|Tn|. The moment inequality is stated as follows.

Theorem B.1. Under Assumption 1, if Θp,ι <∞ for some p ≥ 2 and ι ∈ I , then

∥∥∥∥∥∑
i∈Tn

(Yi,n − EYi,n)

∥∥∥∥∥
Lp

≤ 2d
√
p− 1Θp,ι |Tn|1/2 . (B.2)

The main strategy to prove Theorem B.1 is to decompose every (Yi,n − EYi,n) as a summation

of a martingale difference array {Vi,n,ι(m)}∞m=1 and apply Lemma B.1 to bound the Lp-norm of

the mth element of the martingale difference array by θm,p,ι. An application of Theorem B.1 is the

following exponential inequality.

Theorem B.2. Under Assumption 1, if (i) EYi,n = 0 for any i ∈ Tn, (ii) for any real number

p ≥ 2, there exists a sequence ι(p) ∈ I such that Θp,ι(p) <∞, and (iii)

γ0 ≡ sup
p≥2

p−νΘp,ι(p) <∞, (B.3)

then for α = 2
1+2ν and for all t ∈ [0, t0), we have

m (t) ≡ E [exp (t |Zn|α)] ≤ 1 + cα

(
1− t

t0

)−1/2 t

t0
,

where t0 =
(
eαγα0 2

αd
)−1 and cα is a constant depending only on α. Hence, for any ϵ > 0, by taking

t = t0/2, we have

P (|Sn| ≥ |Tn| ϵ) ≤

(
1 +

√
2cα
2

)
exp

(
−|Tn|1/(1+2ν) ϵ2/(1+2ν)

2αd+1eαγα0

)
.
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Condition (B.3) is similar to (2.21) in Wu and Wu (2016). It assumes that Θp,ι(p) increases

slower than Cpν for some ν ≥ 0 as p → ∞. As mentioned in Wu and Wu (2016), γ0 can be

regarded as a dependence-adjusted norm.

Next, we summarize the relations between the two types of Lp-FD coefficients in Lemmas B.2-

B.5. Lemmas B.3-B.5 are the keys to transfer the properties of θm,p,ι and Θs,p,ι to the properties

of ∆p(s) in Section 3 and they will be used in the proofs of Theorems 3.1-3.5. In the following

lemmas, ∆p(s) denotes the Lp-FD coefficient of {Yi,n} on {ϵi,n}.

Lemma B.2. For any p ≥ 1, m ≥ 1, and ι ∈ I , we have θm,p,ι ≤ 3∆p(ιm−1). Immediately,

Θs,p,ι ≤ 3
∞∑

m=s

ιd/2m ∆p(ιm−1) and Θp,ι ≤ 3
∞∑

m=1

ιd/2m ∆p(ιm−1).

Lemma B.3. If {Yi,n} is L1-FD on {ϵi,n}, then lims→∞
∑∞

m=s θm,1,ι = 0 for some ι ∈ I .

Lemma B.4. For any p ≥ 1, if ∆p(0) <∞ and ∆p(s) = O (s−κ) as s→ ∞ for some κ > d
2 , then

Θp,ι <∞ and Θs,p,ι = o
(
s−1
)

as s→ ∞ for some ι ∈ I .

Lemma B.5. If {Yi,n} is Lp-FD on {ϵi,n} for any p ≥ 2 with ∆p(s) ≤ O (pν)O (s−κ) for some

κ > d
2 and ν ≥ 0 as p → ∞ and s → ∞, where O (pν) does not depend on s and O (s−κ) does not

depend on p, then γ0 ≡ supp≥2 p
−νΘp,ι <∞ for some ι ∈ I .

Finally, we illustrate how various ι’s can improve our results. Take Theorem B.1 as an example.

If we fix ι as ι∗ = (0, 1, 2, . . .), then Θp,ι∗ =
∑∞

m=1m
d/2θm,p,ι∗ ≤

∑∞
m=1m

d/2∆p(m− 1) by Lemma

B.2. To establish the moment inequality, we need the condition ∆p(s) = O(s−d/2−1−δ) for some

δ > 0 to ensure Θp,ι∗ < ∞. However, from Lemma B.4, whenever ∆p(s) = O(s−d/2−δ) for some

δ > 0, we have Θp,ι < ∞ for some ι. Similar improvement also appears in the proofs of the LLN,

the CLT and the exponential inequality.
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C. Proofs for Section 3.2

The proofs in this section rely heavily on the theory of the second-type Lp-FD coefficient in Ap-

pendix B. Recall I ≡ {ι = (ι0, ι1, . . .) : ι0 = 0, ιm > ιm−1, ιm ∈ N for all m ≥ 1}.

Proof of Theorem 3.4. The idea of the proof is borrowed from that for the LLN in Jenish and Prucha

(2012). By Condition (ii) in this theorem and Lemma B.3, there exists a sequence ι ∈ I such that

lim
s→∞

∞∑
m=s

θm,1,ι = 0. (C.1)

Recall that Fi,n(m) = σ (ϵj,n : dij < m). For any fixed s ∈ N, we decompose Yi,n − EYi,n as

Yi,n − EYi,n = ξsi,n + ηsi,n,

where ξsi,n = E (Yi,n|Fi,n (ιs)) − EYi,n and ηsi,n = Yi,n − E(Yi,n|Fi,n (ιs)). Therefore, it suffices to

show that both ξsi,n and ηsi,n satisfy an LLN.

(1) Consider ξsi,n first. It suffices to show that ξsi,n satisfies the assumptions of Theorem 3 in

Jenish and Prucha (2009). First, for all s ≥ 1, i ∈ Tn, and n ≥ 1, by conditional Jensen’s inequality,

sup
n,i∈Tn

∥∥ξsi,n∥∥Lp ≤ 2 sup
n,i∈Tn

∥Yi,n∥Lp <∞.

So, {ξsi,n, i ∈ Tn, n ∈ N} is uniformly Lp-bounded for p > 1, and as a result, it is uniformly L1-

integrable. Second, since ξsi,n is measurable with respect to Fi,n (ιs) and ϵi,n’s are independent,

ξsi,n and ξsj,n are independent when dij ≥ 2ιs. Thus, the α-mixing coefficient ᾱξs(1, 1, r) of ξsi,n will

become zero when r ≥ 2ιs, which indicates that
∑∞

m=1m
d−1ᾱξs(1, 1,m) < ∞. Therefore, all the

conditions in Theorem 3 in Jenish and Prucha (2009) are satisfied for ξsi,n. So, for each s ≥ 1,

1

|Tn|

∥∥∥∥∥∑
i∈Tn

ξsi,n

∥∥∥∥∥
L1

→ 0 as n→ ∞. (C.2)
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(2) Next, we will investigate ηsi,n. Recall Vi,n,ι (k) ≡ E (Yi,n|Fi,n (ιk)) − E (Yi,n|Fi,n (ιk−1)) and

note that ηsi,n =
∑∞

k=s+1 Vi,n,ι (k). Thus,

1

|Tn|

∥∥∥∥∥∑
i∈Tn

ηsi,n

∥∥∥∥∥
L1

=
1

|Tn|

∥∥∥∥∥∑
i∈Tn

∞∑
k=s+1

Vi,n,ι (k)

∥∥∥∥∥
L1

≤ 1

|Tn|

∞∑
k=s+1

∑
i∈Tn

∥Vi,n,ι (k)∥L1

≤ 1

|Tn|

∞∑
k=s+1

∑
i∈Tn

θk,1,ι =
∞∑

k=s+1

θk,1,ι → 0 as s→ ∞,

(C.3)

where the last inequality follows from (B.1) and the last limit follows from (C.1).

Combining (C.2) and (C.3), for all s ≥ 1, we have

lim sup
n→∞

1

|Tn|

∥∥∥∥∥∑
i∈Tn

(Yi,n − EYi,n)

∥∥∥∥∥ ≤ lim sup
n→∞

1

|Tn|

∥∥∥∥∥∑
i∈Tn

ξsi,n

∥∥∥∥∥+ lim sup
n→∞

1

|Tn|

∥∥∥∥∥∑
i∈Tn

ηsi,n

∥∥∥∥∥ ≤
∞∑

k=s+1

θk,1,ι.

By letting s→ ∞, we complete the proof. ■

Proof of Theorem 3.5. This proof adopts the strategy employed by Jenish and Prucha (2012)

in proving their NED CLT. As this proof is lengthy, we break it up into several parts.

Step 1. Decomposition of Yi,n. By Condition (i) in this theorem and Lyapunov’s inequality,

∆2(0) = sup
n

sup
i∈Dn

∥∥∥Yi,n − Yi,n,{j:dij≥0}

∥∥∥
L2

≤ 2 sup
n

sup
i∈Dn

∥Yi,n∥Lp <∞.

Together with Condition (iii) in this theorem, by Lemma B.4, there exists a sequence ι ∈ I such

that

Θ2,ι <∞ and Θs,2,ι = o(s−1) (C.4)

as s → ∞. Now, recall that Fi,n(m) = σ (ϵj,n : dij < m). For any fixed s ∈ N, we decompose

Yi,n − EYi,n as follows,

Yi,n − EYi,n = ξsi,n + ηsi,n,

41



where ξsi,n = E (Yi,n|Fi,n (ιs))− EYi,n and ηsi,n = Yi,n − E(Yi,n|Fi,n (ιs)). Let

Sn,s =
∑
i∈Tn

ξsi,n, S̃n,s =
∑
i∈Tn

ηsi,n, σ2n,s = Var (Sn,s) , σ̃2n,s = Var
(
S̃n,s

)
.

By the Minkowski inequality and Sn − ESn = Sn,s + S̃n,s, we have

σn = ∥Sn − ESn∥L2 ≤ ∥Sn,s∥L2 +
∥∥∥S̃n,s∥∥∥

L2
= σn,s + σ̃n,s.

Similar inequalities hold if we exchange the locations of σn, σn,s, σ̃n,s in the above inequality, which

leads to

|σn − σn,s| ≤ σ̃n,s and |σn − σ̃n,s| ≤ σn,s. (C.5)

Now we consider the spatial FDM of
{
ηsi,n : i ∈ Dn, n ≥ 1

}
on {ϵi,n : i ∈ Dn, n ≥ 1}. Recall that

Ii,m,ι = {j ∈ Dn : dij ∈ [ιm−1, ιm)} and denote F̌i,n (ιs) = σ {ϵj,n : j ∈ {dij < ιs} \Ii,m,ι}, F̆i,m,ι =

σ
{
ϵ∗j,n : j ∈ Ii,m,ι

}
. Then


ηsi,n − ηsi,n,Ii,m,ι

= Yi,n − E (Yi,n |Fi,n (ιs))− Yi,n,Ii,m,ι + E
(
Yi,n,Ii,m,ι

∣∣∣F̌i,n (ιs) ∨ F̆i,m,ι

)
, ιm ≤ ιs,

ηsi,n − ηsi,n,Ii,m,ι
= Yi,n − Yi,n,Ii,m,ι ιm > ιs.

Let θsm,2,ι ≡ supn supi∈Dn

∥∥∥ηsi,n − ηsi,n,Ii,m,ι

∥∥∥
L2

and Θs
2,ι ≡

∑∞
m=1 ι

d/2
m θsm,2,ι. When m ≤ s, i.e.,

ιm ≤ ιs, because Vi,n,ι (k) = E (Yi,n|Fi,n (ιk))− E (Yi,n|Fi,n (ιk−1)) and ηsi,n =
∑∞

k=s+1 Vi,n,ι (k), by

Minkowski’s inequality,

θsm,2,ι ≤ sup
n

sup
i∈Dn

{∥∥ηsi,n∥∥L2 +
∥∥∥ηsi,n,Ii,m,ι

∥∥∥
L2

}
≤ 2 sup

n
sup
i∈Dn

∥∥ηsi,n∥∥L2 = 2 sup
n

sup
i∈Dn

∥∥∥∥∥
∞∑

k=s+1

Vi,n,ι (k)

∥∥∥∥∥
L2

≤2

∞∑
k=s+1

sup
n

sup
i∈Dn

∥Vi,n,ι (k)∥L2 ≤ 2
∞∑

k=s+1

θk,2,ι,
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where the last inequality follows from (B.1). When m > s, i.e., ιm > ιs, we have

θsm,2,ι = sup
n

sup
i∈Dn

∥∥Yi,n − Yi,n,Ii,m,ι

∥∥
L2 = θm,2,ι.

Therefore, by the above two results,

Θs
2,ι ≡

∞∑
m=1

ιd/2m θsm,2,ι =
s∑

m=1

ιd/2m θsm,2,ι +
∞∑

m=s+1

ιd/2m θsm,2,ι ≤ 2
s∑

m=1

ιd/2m

∞∑
k=s+1

θk,2,ι +
∞∑

m=s+1

ιd/2m θm,2,ι

≤2
s∑

m=1

∞∑
k=s+1

ι
d/2
k θk,2,ι + 2

∞∑
m=s+1

ιd/2m θm,2,ι = 2 (s+ 1)Θs+1,2,ι → 0 as s→ ∞,

where the last limit follows from Θs,2,ι = o(s−1) in (C.4). Next, from (C.4), Theorem B.1 implies

that σn = ∥Sn − ESn∥L2 ≤ 2dΘ2,ι

√
|Tn| and

σ̃n,s =
∥∥∥S̃n,s∥∥∥

L2
=

∥∥∥∥∥∑
i∈Tn

ηsi,n

∥∥∥∥∥
L2

≤ 2dΘs
2,ι

√
|Tn|. (C.6)

From Condition (ii) in this theorem, σn ≥
√
B |Tn| for all n ≥ N (w.l.o.g. set N = 1). Conse-

quently,

lim
s→∞

sup
n≥1

σ̃n,s
σn

≤ lim
s→∞

2dΘs
2,ι√
B

= 0. (C.7)

By (C.5) and (C.7),

lim
s→∞

lim sup
n→∞

∣∣∣∣1− σn,s
σn

∣∣∣∣ ≤ lim
s→∞

sup
n≥1

σ̃n,s
σn

= 0, (C.8)

and

C ≡ sup
n≥1

sup
s∈N

σn,s
σn

<∞. (C.9)

Step 2. Establish CLT for Sn,s =
∑

i∈Tn
ξsi,n. To do so, we need to show that for any fixed s,

ξsi,n satisfies the conditions of Lemma A.1. First,
{
ξsi,n

}
is 2ιs-dependent because ξsi,n is measurable
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with respect to Fi,n (ιs) and ϵi,n’s are independent. Second, by the conditional Jensen inequality,

sup
n,i∈Tn

∥∥ξsi,n∥∥Lp = sup
n,i∈Tn

∥E (Yi,n |Fi,n (ιs))− EYi,n∥Lp ≤ 2 sup
n,i∈Dn

∥Yi,n∥Lp <∞.

So, {ξsi,n} is uniformly Lp-bounded. Since p > 2, {ξsi,n} is also uniformly L2 integrable. Third, by

(C.6), we have σ̃n,s√
|Tn|

≤ 2dΘs
2,ι. Since lims→∞Θs

2,ι = 0, there exists s0 such that whenever s ≥ s0,
σ̃n,s√
|Tn|

≤ 2dΘs
2,ι ≤

√
B
2 . Therefore, it follows from (C.5) that for all s ≥ s0, (σn − σ̃n,s) /

√
|Tn| ≤

σn,s/
√
|Tn|. Hence,

lim inf
n→∞

σn,s√
|Tn|

≥ lim inf
n→∞

σn√
|Tn|

− lim sup
n→∞

σ̃n,s√
|Tn|

≥
√
B −

√
B

2
=

√
B

2
> 0.

Thus, by Lemma A.1, when s ≥ s0,

Sn,s
σn,s

d→ N (0, 1) as n→ ∞. (C.10)

Since the value of s0 does not affect the later analysis, suppose s0 = 1 in the following w.l.o.g.

Step 3. CLT for σ−1
n

∑
i∈Tn

(Yi,n − EYi,n). Next, we will show that the just established CLT

for
{
ξsi,n

}
can be carried over to {Yi,n} by the same argument as in Jenish and Prucha (2012).

Denote Wn = σ−1
n (Sn − ESn) and Uns = σ−1

n Sn,s. Then Wn − Uns = σ−1
n S̃n,s. Condition (3) of

Lemma A.2 holds because

lim
s→∞

lim sup
n→∞

P (|Wn − Uns| > ϵ) = lim
s→∞

lim sup
n→∞

P
(∣∣∣σ−1

n S̃n,s

∣∣∣2 > ϵ2
)

≤ lim
s→∞

lim sup
n→∞

σ̃2n,s
σ2nϵ

2
= 0,

(C.11)

where the inequality follows from Markov’s inequality and the last limit is due to (C.7). Next,

we proceed to show Wn
d→ U ∼ N (0, 1) by contradiction. In order to do that, let M be

the set of all probability measures on (R,B), and observe that we can metricize M by, e.g.,

the Prokhorov distance d (·, ·). Let µn and µ be the probability measure corresponding to Wn
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and U , respectively. Then Wn
d→ U ⇐⇒ µn → µ ⇐⇒ d (µn, µ) → 0 as n → ∞.

Now, we suppose µn does not converge to µ, i.e., for some ϵ > 0, there exists a subsequence

{n (m)}∞m=1 such that d
(
µn(m), µ

)
> ϵ for all n (m). From (C.9), 0 <

σn,s

σn
≤ C < ∞, i.e.,{

σn,s

σn

}∞

n=1
is a uniformly bounded sequence over s ∈ N. Especially, for s = 1,

{
σn(m),1/σn(m)

}∞
m=1

is a bounded sequence. By the Bolzano-Weierstrass Theorem, it has a convergent subsequence{
σn(m(k1)),1/σn(m(k1))

}∞
k1=1

such that σn(m(k1)),1/σn(m(k1)) → p (1) as k1 → ∞. For s = 2, consider{
σn(m(k1)),2/σn(m(k1))

}
. By the same argument, there exists a further subsequence {n (m (k1 (k2)))}

such that σn(m(k1(k2))),2/σn(m(k1(k2))) → p (2). Repeating this argument, we can construct a subse-

quence {n (m (k1 (k2 (· · · (ks)))))} for all s ≥ 1 and σn(m(k1(k2(···(ks))))),s/σn(m(k1(k2(···(ks))))) → p (s)

as ks → ∞. Now construct a subsequence {nl}: n1 is the first element of {n (m (k1))}, n2 is the

second element of {n (m (k1 (k2)))}, and so on. Then for all s ≥ 1,

lim
l→∞

σnl,s

σnl

= p (s) .

It follows from (C.10), Uns =
σn,s

σn

[
σ−1
n,s

∑
i∈Tn

ξsi,n

]
, and Slutsky’s theorem that Unls

d→ Us ∼

N
(
0, p2 (s)

)
as l → ∞. Since |p (s)− 1| ≤

∣∣∣p (s)− σnl,s

σnl

∣∣∣+ ∣∣∣σnl,s

σnl
− 1
∣∣∣,

lim
s→∞

|p (s)− 1| ≤ lim
s→∞

lim sup
l→∞

∣∣∣∣p (s)− σnl,s

σnl

∣∣∣∣+ lim
s→∞

lim sup
l→∞

∣∣∣∣σn,sσn
− 1

∣∣∣∣ = 0,

where the last limit follows from (C.8). Therefore, Us
d→ U . And by (C.11),

lim
s→∞

lim sup
l→∞

P (|Wnl
− Unls| > ϵ) ≤ lim

s→∞
lim sup
n→∞

P (|Wn − Uns| > ϵ) = 0.

Then by Lemma A.2, Wnl

d→ U ∼ N (0, 1) as l → ∞. So, d(Wnl
, U) → 0. Since {nl} ⊂

{n (m)}, d(Wnl
, U) → 0 contradicts the assumption that d

(
µn(m), µ

)
> ϵ for all n (m). Hence,

σ−1
n (Sn − ESn) =Wn

d→ U . ■
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D. Conditional Spatial Functional Dependence

We generalize the concept of spatial FDM to the conditional spatial FDM. The only difference to the

original spatial functional dependence is that now the underlying random field becomes condition-

ally independent (see, e.g., Chow and Teicher, 2003) and all expectations are taken conditionally.

Let (Ω,F ,P) be the underlying probability space and C be a sub-σ-field of F .

Let Yn be defined as in (2.1), where ϵi,n’s are conditionally independent given C. So, ϵi,n’s

might be dependent on each other unconditionally. Suppose that conditional on C, ϵ∗i,n is an

i.i.d. copy of ϵi,n. For a set I ⊂ Dn, define ϵi,n,I ≡ ϵ∗i,n if i ∈ I and ϵi,n,I ≡ ϵi,n if i /∈ I; we

denote ϵn,I =

((
ϵ′i,n,I

)
i∈Dn

)′
. Then Yi,n,I = gi,n (ϵn,I) is a coupled version of Yi,n on I and

Yn,I = (Y1,n,I , . . . , Yn,n,I)
′.

Definition D.1 (Conditional spatial functional dependence). Let Yn and ϵn be defined as above.

For p ≥ 1, n ≥ 1 and I ⊂ Dn, define δCp (i, I, n) ≡ ∥Yi,n − Yi,n,I∥Lp,C. And we say that Y =

{Yi,n, i ∈ Dn, n ≥ 1} is C-conditionally Lp-functionally dependent or C-conditionally p-stable on

ϵ = {ϵi,n, i ∈ Dn, n ≥ 1} if the C-conditional Lp-functional dependence coefficient

∆C
p(s) ≡ sup

n≥1
sup
i∈Dn

δCp (i, {j : dij ≥ s} , n) → 0 almost surely (a.s.) as s→ ∞. (D.1)

The conditional spatial functional dependence inherits the properties of the unconditional

version. This is because the theorems used in the proofs of the unconditional theorems can

be generalized to the corresponding conditional versions (see Prakasa Rao, 2009; Roussas, 2008;

Yuan, Wei and Lei, 2014 and the supplementary document of Forchini, Jiang and Peng, 2018).

Now, we state our LLN and CLT under conditional spatial functional dependence. In the fol-

lowing, suppose that {Yi,n, i ∈ Dn, n ≥ 1} is generated by ϵ = {ϵi,n, i ∈ Dn, n ≥ 1}, and ϵi,n’s are

conditionally independent given C. Tn is a finite subset of Dn satisfying |Tn| → ∞ as n→ ∞, and

we write Sn ≡
∑

i∈Tn
Yi,n and σ2n ≡ VarC (Sn).
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Theorem D.1 (Law of large numbers). Under Assumption 1, suppose that supn≥1 supi∈Dn
∥Yi,n∥Lp,C <

∞ a.s. for some p > 1 and {Yi,n} is C-conditionally L1-FD on {ϵi,n}, i.e., lims→∞∆1(s) = 0 a.s.

as s→ ∞. Then

|Tn|−1 (Sn − ECSn)
p→ 0.

Proof. From Theorem 3.4, |Tn|−1 ∥Sn − ECSn∥L1,C
a.s.−−→0 as n→ ∞. Thus, by the Markov inequal-

ity, for any ϵ > 0,

EC

{
1
[
|Tn|−1 ∥Sn − ECSn∥ > ϵ

]}
a.s.−−→0,

as n → ∞. Since the indicator function 1(·) is always bounded by 1, by the law of iterated

expectation and the bounded convergence theorem,

E
{
1
[
|Tn|−1 ∥Sn − ECSn∥ > ϵ

]}
= EEC

{
1
[
|Tn|−1 ∥Sn − ECSn∥ > ϵ

]}
→ 0,

i.e., |Tn|−1 (Sn − ECSn)
p→ 0. ■

Theorem D.2 (Central limit theorem). Under Assumption 1, suppose the following conditions

hold: (1) supn≥1 supi∈Dn
∥Yi,n∥Lp,C < ∞ a.s. for some p > 2; (2) lim infn→∞ |Tn|−1 σ2n > 0 a.s.;

(3) the C-conditional L2-FD coefficient of {Yi,n} on {ϵi,n} satisfies ∆2(s) = O (s−κ) a.s. as s→ ∞

for some κ > d
2 . Then

Sn − ECSn
σn

d→ N (0, 1) .

Proof. From Theorem 3.5, for all x ∈ R, PC

(
Sn−ECSn

σn
≤ x

)
a.s.−−→Φ(x) as n→ ∞, where Φ(·) is the

cumulative distribution function of N (0, 1). Since PC(·) is always bounded by 1, by the law of

iterated expectation and the bounded convergence theorem,

P
(
Sn − ECSn

σn
≤ x

)
= EPC

(
Sn − ECSn

σn
≤ x

)
→ Φ(x),

as n→ ∞ for all x ∈ R, i.e., Sn−ECSn

σn

d→ N (0, 1). ■
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Supplementary Material

Wu, Z., Jiang, W., & Xu, X. (2024). Supplement to “Applications of Functional Dependence

to Spatial Econometrics”, Econometric Theory Supplementary Material. To view, please visit:

https://doi.org/10.1017/S026646662400015X.
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